The anticipated odds ratios to decide the choice of a primary binary endpoint

Marta Bofill Roig Guadalupe Gómez Melis

Clinical trial

Evaluating the applicability and comparing the effectiveness of a new intervention against the standard of care.

Protocol:

- formalizes the medical question
- describes the clinical outcomes of greatest interest
- specifies the design and organization of the trial

Assessment of the treatment effect

The primary endpoint measures the clinical evidence in a clinical trial.

Deciding the primary endpoint in a Randomized Clinical Trial

Reporting more than one efficacy endpoints: Coronary artery disease (TAXUS-V¹)

Placlitaxel-eluting stent (Intervention) versus Bare metal stents (Control)

Primary Endpoint

Relevant Endpoint $\varepsilon_1 \longrightarrow \text{Target-vessel revascularization}$

Secondary Endpoint $\varepsilon_2 \longrightarrow$ Death or myocardial infarction

M. Bofill Roig, G. Gómez Melis (UPC)

¹ Stone GW, et al.; TAXUS V Investigators. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA. 2005 Sep 14; 294(10):1215–23.

Deciding the primary endpoint in a Randomized Clinical Trial

Reporting more than one efficacy endpoints: Coronary artery disease (TAXUS-V¹)

Placlitaxel-eluting stent (Intervention) versus Bare metal stents (Control)

Primary Endpoint

Relevant Endpoint $\varepsilon_1 \longrightarrow \text{Target-vessel revascularization}$

Secondary Endpoint $\varepsilon_2 \longrightarrow$ **Death or myocardial infarction**

Composite Endpoint $\varepsilon_* = \varepsilon_1 \cup \varepsilon_2 \longrightarrow$ Major adverse cardiac events

Composite Endpoint

Combination of several responses into a unique variable.

Advantages:

- More information
- Power might be increased

Disadvantages:

- Challenging interpretation of results
- Power might be reduced

M. Bofill Roig, G. Gómez Melis (UPC)

¹ Stone GW, et al.; TAXUS V Investigators. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial. JAMA. 2005 Sep 14; 294(10):1215–23.

Binary Composite Endpoints

- **2** ARE method for Binary Endpoints
- **3** Statistical Efficient Guidelines
- **4** Concluding remarks and future research

1 Binary Composite Endpoints

- **2** ARE method for Binary Endpoints
- **3** Statistical Efficient Guidelines

4 Concluding remarks and future research

- Control Group = 0
- Treatment Group = 1

Primary	Binary Response	Probabilities	Odds	Odds Ratio
Endpoint				
Relevant ε_1	X_1	$(p_1^{(0)},p_1^{(1)})$	$O_1^{(0)} = \frac{p_1^{(0)}}{1 - p_1^{(0)}}$	OR ₁
Additional ε_2	<i>X</i> ₂	$(p_2^{(0)},p_2^{(1)})$	$O_2^{(0)} = \frac{p_2^{(0)}}{1 - p_2^{(0)}}$	OR ₂
Composite ε_*	$X_* = \begin{cases} 1, \text{ if } X_1 + X_2 \ge 1\\ 0, \text{ if } X_1 + X_2 = 0 \end{cases}$	$(p_{\ast}^{(0)},p_{\ast}^{(1)})$	$O_*^{(0)} = \frac{p_*^{(0)}}{1 - p_*^{(0)}}$	OR _*

Primary	Binary Response	Probabilities	Odds	Odds Ratio
Endpoint				
Relevant ε_1	<i>x</i> ₁	$(p_1^{(0)}, p_1^{(1)})$	$O_1^{(0)} = p_1^{(0)} / (1 - p_1^{(0)})$	OR ₁
Additional ε_2	<i>X</i> ₂	$(p_2^{(0)}, p_2^{(1)})$	$O_2^{(0)} = p_2^{(0)} / (1 - p_2^{(0)})$	OR ₂
Composite <i>ɛ</i> *	$X_* = \begin{cases} 1, \text{ if } X_1 + X_2 \ge 1\\ 0, \text{ if } X_1 + X_2 = 0 \end{cases}$	$(p_{\ast}^{(0)},p_{\ast}^{(1)})$	$O_*^{(0)} = p_*^{(0)} / (1 - p_*^{(0)})$	OR*

Primary	Binary Response	Probabilities	Odds	Odds Ratio
Endpoint				
Relevant ε_1	<i>x</i> ₁	$(p_1^{(0)}, p_1^{(1)})$	$O_1^{(0)} = p_1^{(0)} / (1 - p_1^{(0)})$	OR ₁
Additional ϵ_2	<i>X</i> ₂	$(p_2^{(0)}, p_2^{(1)})$	$O_2^{(0)} = p_2^{(0)} / (1 - p_2^{(0)})$	OR ₂
Composite <i>E</i> *	$X_* = \begin{cases} 1, \text{ if } X_1 + X_2 \ge 1\\ 0, \text{ if } X_1 + X_2 = 0 \end{cases}$	$(p_{\ast}^{(0)},p_{\ast}^{(1)})$	$O_*^{(0)} = p_*^{(0)} / (1 - p_*^{(0)})$	OR*

Probability of ε_* (**Bahadur's Theorem**²):

$$p_*^{(i)} = 1 - (1 - p_1^{(i)})(1 - p_2^{(i)}) - \rho^{(i)} \sqrt{p_1^{(i)} p_2^{(i)}(1 - p_1^{(i)})(1 - p_2^{(i)})}$$

Bounds for Pearson's correlation ³:

$$\rho^{(i)} \in [m(p_1^{(i)}, p_2^{(i)}), \ M(p_1^{(i)}, p_2^{(i)})] \subseteq [-1, 1]$$

M. Bofill Roig, G. Gómez Melis (UPC)

²Bahadur R. R. (1961). A representation of the joint distribution of responses to n dichotomous items. Stanford University Press. 158–168.

³Sozu T., Sugimoto T. and Hamasaki T. (2010). Sample size determination in clinical trials with multiple co-primary binary endpoints. *Stat Med.* **29(21)**, 2169–79.

Primary	Binary Response	Probabilities	Odds	Odds Ratio
Endpoint				
Relevant ε_1	<i>x</i> ₁	$(p_1^{(0)}, p_1^{(1)})$	$O_1^{(0)} = p_1^{(0)} / (1 - p_1^{(0)})$	OR ₁
Additional ϵ_2	<i>X</i> ₂	$(p_2^{(0)}, p_2^{(1)})$	$O_2^{(0)} = p_2^{(0)} / (1 - p_2^{(0)})$	OR ₂
Composite £*	$X_* = \begin{cases} 1, \text{ if } X_1 + X_2 \ge 1\\ 0, \text{ if } X_1 + X_2 = 0 \end{cases}$	$(p_{\ast}^{(0)},p_{\ast}^{(1)})$	$O_*^{(0)} = p_*^{(0)} / (1 - p_*^{(0)})$	OR*

Odds Ratio of ε_* :

$$OR_{*} = \frac{\left((1 + OR_{1}O_{1}^{(0)})(1 + OR_{2}O_{2}^{(0)}) - 1 - \rho^{(1)}\sqrt{OR_{1}OR_{2}O_{1}^{(0)}O_{2}^{(0)}}\right)}{\left((1 + O_{1}^{(0)})(1 + O_{2}^{(0)}) - 1 - \rho^{(0)}\sqrt{O_{1}^{(0)}O_{2}^{(0)}}\right)} \cdot \frac{1 + \rho^{(0)}\sqrt{O_{1}^{(0)}O_{2}^{(0)}}}{1 + \rho^{(1)}\sqrt{OR_{1}OR_{2}O_{1}^{(0)}O_{2}^{(0)}}}$$

Primary	Binary Response	Probabilities	Odds	Odds Ratio
Endpoint				
Relevant ε_1	<i>x</i> ₁	$(p_1^{(0)}, p_1^{(1)})$	$O_1^{(0)} = p_1^{(0)} / (1 - p_1^{(0)})$	OR ₁
Additional ϵ_2	<i>X</i> ₂	$(p_2^{(0)}, p_2^{(1)})$	$O_2^{(0)} = p_2^{(0)} / (1 - p_2^{(0)})$	OR ₂
Composite <i>ɛ</i> *	$X_* = \begin{cases} 1, \text{ if } X_1 + X_2 \ge 1\\ 0, \text{ if } X_1 + X_2 = 0 \end{cases}$	$(p_{*}^{(0)},p_{*}^{(1)})$	$O_*^{(0)} = p_*^{(0)} / (1 - p_*^{(0)})$	OR*

Odds Ratio of ε_* :

$$OR_{*} = \frac{\left((1 + OR_{1}O_{1}^{(0)})(1 + OR_{2}O_{2}^{(0)}) - 1 - \rho^{(1)}\sqrt{OR_{1}OR_{2}O_{1}^{(0)}O_{2}^{(0)}}\right)}{\left((1 + O_{1}^{(0)})(1 + O_{2}^{(0)}) - 1 - \rho^{(0)}\sqrt{O_{1}^{(0)}O_{2}^{(0)}}\right)} \cdot \frac{1 + \rho^{(0)}\sqrt{O_{1}^{(0)}O_{2}^{(0)}}}{1 + \rho^{(1)}\sqrt{OR_{1}OR_{2}O_{1}^{(0)}O_{2}^{(0)}}}$$

Relationship between treatment effects:

$$\begin{aligned} & \text{OR}_1 < 1, \ \text{OR}_2 < 1, \ \rho^{(0)} = \rho^{(1)} = 0 & \Rightarrow & \text{OR}_* \in [\min(\text{OR}_1, \text{OR}_2), \max(\text{OR}_1, \text{OR}_2)] \\ & \text{OR}_1 = 1, \ \text{OR}_2 = 1, \ \rho^{(0)} = \rho^{(1)} & \Rightarrow & \text{OR}_* = 1 \end{aligned}$$

Relationship between treatment effects:

$$\begin{aligned} & \text{OR}_1 = 1, \ \text{OR}_2 = 1, \ \rho^{(0)} = \rho^{(1)} & \Rightarrow & \text{OR}_* = 1 \\ & \text{OR}_1 = 1, \ \text{OR}_2 = 1, \ \rho^{(0)} = \rho^{(1)} & \Leftarrow & \text{OR}_* = 1 \end{aligned}$$

Primary relevant endpoint ε_1 :	Primary composite endpoint ε_* :	
$\mathcal{H}_1: \begin{array}{l} H_0: \log(\mathrm{OR}_1) = 0\\ H_1: \log(\mathrm{OR}_1) < 0 \end{array}$	$\mathcal{H}_*: \begin{cases} H_0: \log(\mathrm{OR}_*) = 0\\ H_1: \log(\mathrm{OR}_*) < 0 \end{cases}$	

⁵Bofill M, Gómez G (2017). Selection of composite binary endpoints in clinical trials.

M. Bofill Roig, G. Gómez Melis (UPC)

 $^{^4}$ Gómez G, Lagakos SW. (2013). Statistical considerations when using a composite endpoint for comparing treatment groups. *Stat Med.* Jul 1; 719–38.

Relationship between treatment effects:

$$\begin{aligned} & \text{OR}_1 = 1, \ \text{OR}_2 = 1, \ \rho^{(0)} = \rho^{(1)} & \Rightarrow & \text{OR}_* = 1 \\ & \text{OR}_1 = 1, \ \text{OR}_2 = 1, \ \rho^{(0)} = \rho^{(1)} & \Leftarrow & \text{OR}_* = 1 \end{aligned}$$

Primary relevant endpoint ε_1 :		Primary composite endpoint ε_* :	
	$\mathcal{H}_1: \begin{array}{l} H_0: \log(\mathrm{OR}_1) = 0\\ H_1: \log(\mathrm{OR}_1) < 0 \end{array}$	$\mathcal{H}_*: \begin{cases} H_0: & \log(\mathrm{OR}_*) = 0 \\ H_1: & \log(\mathrm{OR}_*) < 0 \end{cases}$	

Asymptotic Relative Efficiency (ARE) method

The choice between a composite or one of its components as primary endpoint:

- Time-to-event endpoints: Gómez-Lagakos⁴.
- Binary endpoints: Bofill-Gómez⁵.

⁵Bofill M, Gómez G (2017). Selection of composite binary endpoints in clinical trials.

M. Bofill Roig, G. Gómez Melis (UPC)

⁴Gómez G, Lagakos SW. (2013). Statistical considerations when using a composite endpoint for comparing treatment groups. *Stat Med.* Jul 1; 719–38.

1 Binary Composite Endpoints

2 ARE method for Binary Endpoints

3 Statistical Efficient Guidelines

4 Concluding remarks and future research

Pitman's Asymptotic Relative Efficiency

$$H_0:$$
 $\log(OR) = 0$
 $H_{1,n}:$ $\log(OR)_n = \frac{v}{\sqrt{n}}$

 $\sqrt{n}\log(OR)_n \longrightarrow v \text{ as } n \to +\infty, v < 0$

Quantifying the efficiency of $T_{1,n}$, $T_{2,n}$ to attain power $1 - \beta$ at level α

Pitman's Asymptotic Relative Efficiency

$$H_0$$
: $\log(OR) = 0$
 $H_{1,n}$: $\log(OR)_n = \frac{v}{\sqrt{n}}$

Quantifying the efficiency of $T_{1,n}$, $T_{2,n}$ to attain power $1 - \beta$ at level α

 $\sqrt{n}\log(OR)_n \longrightarrow v \text{ as } n \to +\infty, v < 0$

 $\begin{array}{ll} T_{1,n} \to N(0,1), & T_{2,n} \to N(0,1), & \text{under } H_0 \\ T_{1,n} \to N(\delta_1,1), & T_{2,n} \to N(\delta_2,1), & \text{under } H_{1,n} \end{array}$

Asymptotic Relative Efficiency:

$$A(T_{1,n},T_{2,n}) = \left(\frac{\delta_1}{\delta_2}\right)^2$$

Sample Size:

$$A(T_{1,n}, T_{2,n}) = \lim_{n \to +\infty} \frac{n_2(\alpha, \beta, \log(\mathrm{OR})_n)}{n_1(\alpha, \beta, \log(\mathrm{OR})_n)}$$

Primary relevant endpoint ε_1 : \mathcal{H}_1 : $\begin{cases} H_0: \log(OR_1) = 0\\ H_{1,n}: \log(OR_1)_n = \frac{v_1}{\sqrt{n}} \end{cases}$ Primary composite endpoint ε_* :

 $\mathcal{H}_*: \quad \begin{cases} H_0: \quad \log(\mathrm{OR}_*) = 0\\ H_{*,n}: \quad \log(\mathrm{OR}_*)_n = \frac{v_*}{\sqrt{n}} \end{cases}$

Score Statistic: $T_{1,n}$

• Under
$$H_0: T_{1,n} \longrightarrow N(0,1)$$

• Under $H_{1,1}$: $T_{1,n} \longrightarrow N\left(v_1 \sqrt{p_1^{(0)} q_1^{(0)} \pi(1-\pi)}, 1\right)$ Score Statistic: T_{*,n}

- Under $H_0: T_{*,n} \longrightarrow N(0,1)$
- Under $H_{1,*}$: $T_{*,n} \longrightarrow N\left(v_*\sqrt{p_*^{(0)}q_*^{(0)}\pi(1-\pi)}, 1\right)$

Primary relevant endpoint ε_1 : \mathcal{H}_1 : $\begin{cases} H_0: \log(OR_1) = 0\\ H_{1,n}: \log(OR_1)_n = \frac{v_1}{\sqrt{n}} \end{cases}$

Score Statistic: $T_{1,n}$

• Under
$$H_0: T_{1,n} \longrightarrow N(0,1)$$

• Under $H_{1,1}$: $T_{1,n} \longrightarrow N\left(v_1 \sqrt{p_1^{(0)} q_1^{(0)} \pi(1-\pi)}, 1\right)$ Primary composite endpoint ε_* :

$$\mathcal{H}_*: \begin{cases} H_0: \quad \log(\mathrm{OR}_*) = 0\\ H_{*,n}: \quad \log(\mathrm{OR}_*)_n = \frac{v_*}{\sqrt{n}} \end{cases}$$

Score Statistic: T_{*,n}

Under
$$H_0: T_{*,n} \longrightarrow N(0,1)$$

Under
$$H_{1,*}$$
:
 $T_{*,n} \longrightarrow N\left(v_*\sqrt{p_*^{(0)}q_*^{(0)}\pi(1-\pi)}, 1\right)$

Asymptotic Relative Efficiency:

$$\operatorname{ARE}(T_{*,n}, T_{1,n}; p_1^{(0)}, p_2^{(0)}, \rho^{(0)}, \rho^{(1)}, v_1, v_*) = \frac{v_*^2}{v_1^2} \cdot \frac{p_*^{(0)} q_*^{(0)}}{p_1^{(0)} q_1^{(0)}}$$

$$ARE(T_{*,n}, T_{1,n}) = \frac{v_*^2}{v_1^2} \cdot \frac{p_*^{(0)} q_*^{(0)}}{p_1^{(0)} q_1^{(0)}}$$

- Limiting treatments
- Applicability for fixed alternatives

$$ARE(T_{*,n}, T_{1,n}) = \frac{v_*^2}{v_1^2} \cdot \frac{p_*^{(0)} q_*^{(0)}}{p_1^{(0)} q_1^{(0)}}$$

- Limiting treatments
- Applicability for fixed alternatives

Fixed alternatives approach:

$$\begin{array}{rcl} \sqrt{n}\log(\mathrm{OR}_1) &\cong & v_1 \\ \sqrt{n}\log(\mathrm{OR}_*) &\cong & v_* \end{array}$$

$$are(OR_1, OR_2, p_1^{(0)}, p_2^{(0)}, \rho^{(0)}, \rho^{(1)}) = \frac{(\log(OR_*))^2}{(\log(OR_1))^2} \cdot \frac{p_*^{(0)}q_*^{(0)}}{p_1^{(0)}q_1^{(0)}}$$

Criterion

- $are > 1 \implies$ composite endpoint ε_* as primary endpoint.
- *are* $\leq 1 \implies$ relevant endpoint ε_1 as primary endpoint.

The composite endpoint becomes more useful when OR₂ shows a larger effect.

1 Binary Composite Endpoints

2 ARE method for Binary Endpoints

3 Statistical Efficient Guidelines

4 Concluding remarks and future research

Settings used for the guidelines:

•
$$0 < p_1^{(0)}, p_2^{(0)} < 0.1$$

• $0.5 \le OR_1, OR_2 < 1$
• $0 \le \rho < 1$

Total Number of Scenarios: 315348

Criterion:

- $are > 1 \implies$ composite endpoint ε_* as primary endpoint.
- *are* $\leq 1 \implies$ relevant endpoint ε_1 as primary endpoint.

 \implies **percentage of cases** on which the composite is preferred over the relevant endpoint.

Statistical efficiency guidelines

Recommendations in terms of the anticipated effects

- Large: OR between 0.5 and 0.7
- Medium: OR between 0.7 and 0.9
- Low: OR between 0.9 and 1

	Large OR ₂	Medium OR ₂	Low OR ₂
	CE	RE	RE
Large OR1	91%	23%	0%
	CE	CE	RE
Medium OR1	100%	84%	7%
	CE	CE	CE
Low OR1	100%	100%	69%

Statistical efficiency guidelines

Recommendations in terms of the anticipated effects

- Large: OR between 0.5 and 0.7
- Medium: OR between 0.7 and 0.9
- Low: OR between 0.9 and 1

	Large OR ₂	Medium OR ₂	Low OR ₂
	CE	RE	RE
Large OR1	91%	23%	0%
	CE	CE	RE
Medium OR1	100%	84%	7%
	CE	CE	CE
Low OR1	100%	100%	69%

Correlation

Medium-strong

Strong

Medium-weak

CE CE CF CE Large effect E. 99.72% 97.41% 92.87% 84.97% CE/RE CE CE CE/RE Medium effect 8, 74.96% 65,97% 58.23% 56.96% **Freatment effect** RE RF RF RF Low effect E₂ CE/RE CE/RE RE RE Large effect E. 49.80% 42.29% CE CE CE CE/RE 73.47% 68.72% 63.04% 57.78% Medium effect E, CE CE CF CE Low effect E. 92,16% 91,05% 89,87% 86,61%

Weak

Recommendations in terms of the effects and correlation

- Weak: $0 < \rho < 0.3$
- Medium-weak: $0.3 \le \rho < 0.6$
- Medium-strong: $0.6 \le \rho < 0.8$
- Strong: $0.8 \le \rho < 1$

1 Binary Composite Endpoints

- **2** ARE method for Binary Endpoints
- **3** Statistical Efficient Guidelines

4 Concluding remarks and future research

Final remarks

- ARE method: Convenient tool to provide an informed selection between a binary composite endpoint or one of its components as primary endpoint.
- Use of Composite Endpoints has to be justified from a clinical point of view.

Final remarks

- ARE method: Convenient tool to provide an informed selection between a binary composite endpoint or one of its components as primary endpoint.
- Use of Composite Endpoints has to be justified from a clinical point of view.

Future Research

- Sample Size for Composite Binary Endpoints.
- The ARE method as ratio of sample sizes.
- Extension of the ARE method to other comparisons (Composite versus Multiple Primary Endpoints).
- Implementation in the web platform and Shiny application *CompARE*.

