CompARE: a web app to study Composite Endpoints

Guadalupe Gómez Melis Jordi Cortés Martínez Marta Bofill Roig

Primary endpoint

The primary endpoint measures the clinical evidence in a clinical trial.

More than one relevant outcome to measure the efficacy of an intervention

- **MACE** in cardiovascular trials: Death (ε_1) , MI (ε_2) and Rehospitalization (ε_3)
- **PFS** in oncology trials: Death (D, ε_1) and Disease Progression (P, ε_2)

Composite Events ε_*

Combination of several outcomes, $\varepsilon_1, \varepsilon_2, ...$ into a single composite endpoint $\varepsilon_* = \varepsilon_1 \cup \varepsilon_2$

Our work on CE has motivated the web platform CompARE

Time to event endpoint

Primer on Statistical Interpretation or Methods

Informed Choice of Composite End Points in Cardiovascular Trials

Guadalupe Gómez, PhD; Moisés Gómez-Mateu, MSc; Urania Dafni, ScD

OURNAL OF BIOPHAPMACEUTICAL STATISTICS http://dx.doi.org/10.1080/10543406.2015.1094808 Taylor & Francis

Selecting the primary endpoint in a randomized clinical trial: The ARE method

Oleguer Plana-Ripoll of and Guadalupe Gómez⁶

SORT 38 (1) January-June 2014, 73-88

The asymptotic relative efficiency and the ratio of sample sizes when testing two different null hypotheses Guadalupe Giomez-Mateu¹

Selection of the primary end point in an observational cohort study

Guadalupe Gómez,¹ Oleguer Plana-Ripoll,² Urania Dafni^{3,4}

Binary endpoint

RESEARCH ARTICLE

WILEY Statistics

A new approach for sizing trials with composite binary endpoints using anticipated marginal values and accounting for the correlation between components Mara Bolli Rogel Candalupe Comez Melis®

ARE: ASSESSING RELATIVE EFFICIENCY BETWEEN USING \mathcal{E}_1 VERSUS $\mathcal{E}^* = \mathcal{E}_1 \cup \mathcal{E}_2$

- Logrank for T_1 : time to \mathcal{E}_1 • Logrank for T_* : time to \mathcal{E}_* $Z \sim N(\mu_1, 1)$ • Logrank for T_* : time to \mathcal{E}_* $Z_* \sim N(\mu_*, 1)$ $ARE(Z_*, Z) = \left(\frac{\mu_*}{\mu_1}\right)^2 = \frac{\left(\int_0^1 \log\left\{\frac{\lambda_*^{(1)}(t)}{\lambda_*^{(0)}(t)}\right\} f_*^{(0)}(t) dt\right)^2}{(\log HR_1)^2 p_*^{(0)} p_1^{(0)}} = \frac{(ALHR)^2}{(log HR_1)^2} \cdot \frac{p_*^{(0)}}{p_1^{(0)}}$
- **ARE depends on:** 1) T_1 via p_1 and HR₁, 2) T_2 via p_2 and HR₂, 3) (T_1 , T_2) via a Copula and Spearman's rank correlation, ρ , between T_1 and T_2 (assumed equal for both groups)

Criterion for Decision

 $ARE(Z_*, Z) > 1 \Rightarrow T_*$ more efficient than $T_1 \Rightarrow$ Use composite endpoint

Pitman's Interpretation of ARE

 n_1 and $n_*:$ sample sizes required for Z and Z_* to have power $1-\beta$ at level $\alpha.$ Given $0<\alpha<1-\beta<1,$

ARE =
$$\frac{e_1}{e_*} \frac{p_*^{(0)}}{p_1^{(0)}} = \frac{n_1}{n_*} \frac{1 + \frac{p_*^{(1)}}{p_*^{(0)}}}{1 + \frac{p_1^{(1)}}{p_1^{(0)}}}$$

G. Gómez, J. Cortés, M. Bofill (UPC)

CompARE http://cinna.upc.edu/compare/

CompARE

ABOUT US EXPERTISE PUBLICATIONS TALKS OUTREACH CONTACT

What is CompARE?

CompARE is a web-platform inspired to provide help on issues relating to trials with composite endpoints. CompARE may be used as a tool for calculating the elements needed in the planing phase of clinical trials involving composite endpoints. With its user-friendly interface. CompARE allows to input the main parameters included in the trial-such as the treatment effect on the components of the composite endpoint, and its frequencies of occurrence- and helps provide power and sample size calculations among others.

Apps

CompARE is split into two apps for time-to-event and binary endpoints, respectively. They are implemented with the Shiny R package

GO TO TIME-TO-EVENT SHINY

GO TO BINARY SHINY

Features

Ð

Effect Size Studying the treatment effect for the composite endpoint Time to event Binary

Sample Size Computing the number of patients under different scenarios Time to event Binary

Endpoint Selection Identifying the best endpoint combination for the design Time to event Binary

C

Association

Assessing the degree of association between components

Binary

Use CompARE to solve your CE research questions. Two case studies

ZODIAC Trial (1)

- Population: patients with advanced non-small-cell lung cancer
- Experimental intervention (1): vandetanib plus docetaxel
- Reference intervention (0): placebo plus docetaxel
- Endpoint (*ε*₁): Time (*T*₁) from randomization (R) to D (*Death*)
- Endpoint (ε₂): Time (T₂) from R to P (Disease progression)
- Composite endpoint (\mathcal{E}_*) : Time (T_*) from R to PFS (*Death* or *Progression*)
- Double-blind, randomised, phase 3 trial

1. Endpoint selection

How to chose between the composite endpoint and one of its components

2. Effect size

How to specify the expected **treatment effect**? Behavior of the **Hazard ratio** $HR_*(t)$ for the CE

TACTICS Trial to illustrate

Composite Binary Endpoints

3. Sample size

Required sample size for the composite endpoint

(1) Herbst RS et al. (2010). The Lancet Oncology

Zodiac Trial: Input Parameters and Assumptions

Notation

Endpoint 1: ε_1 = Death, Endpoint 2: ε_2 = Disease Progression, Endpoint CE: ε_* = PFS

Endpoint 1		Relationship between endpoints	
Probability	Hazard ratio	Correlation	Туре
0.59	0.91	0.5	Spearman's rho 🔻
Risk over time		Copula	
Constant 🔹	✓ Death	Frank -	
Endpoint 2		Alpha and Power	
Probability	Hazard ratio	Significance level	Power
0.74	0.77	0.05	0.8
Risk over time		Formula	
Constant 👻	Death	Freedman 🔹	

Assumptions

- HR_1 and HR_2 constant over time
- Weibull distributions for *T*¹ and *T*² with common shape parameter in both arms
- Copula to bind T_1 and T_2
- Same correlation (ρ) between T_1 and T_2 in both arms

ZODIAC Trial: Should we use time to Death (D) or PFS?

Study of the efficiency of PFS (CE) versus D as a function of the correlation (ρ) between D and Progression (P) and for 5 different HR_2 for Progression

$$HR_1 = 0.91 \quad p_1 = 0.59 \quad p_2 = 0.74$$

ZODIAC Trial: If we use PFS, how does its effect size behave?

Use CompARE to solve your CE research questions. Binary case study

ZODIAC Trial to illustrate

Time-to-event endpoints (T2E)

1. Endpoint selection

How to chose between the composite endpoint and one of its components

2. Effect size

How to specify the expected **treatment effect**? Behavior of the **Hazard ratio** $HR_*(t)$ for the CE

TACTICS Trial (2)

- Population: patients with unstable angina or non-Q-wave AMI
- **Invasive intervention (1)**: cardiac catheterization and revascularization with angioplasty or bypass surgery if feasible
- Conservative intervention (0): catheterization only for recurrent pain at rest or provokable ischemia
- Endpoint (*ε*₁): Death or MI
- Endpoint (*ε*₂): Rehospitalization
- Composite endpoint (*ε*_{*}): MACE

3. Sample size

Required sample size for the composite endpoint

(2) Cannon, CP, et al. (1998). American Journal of Clinical Oncology

TACTICS-TIMI 18 Trial: Input Parameters and Assumptions

Notation

Endpoint 1: Death or MI, Endpoint 2: Rehospitalization, CE: MACE

ENDPOINTS ASSOCIATION ALPHA AND POWER	Endpoint 2: Probability under control group:	
Composite Endpoint:	Point value 🔹	
Effect Risk difference	Anticipated value:	
Endpoint 1:		
Probability under control group:	Effect Risk difference -	
Point value •	Risk Difference:	
Anticipated value:		
0.01 0.059 0.108 0.157 0.206 0.255 0.304 0.353 0.402 0.451 0.5	Relationship between components:	
Effect Risk difference -		
Risk Difference:	Alpha and Power	
-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 -0.001	O.05 O.8	

Assumptions

Same correlation (ρ) between components in both arms

Testing problem: Should we adopt the invasive strategy?

$$\mathcal{H}_*: \begin{array}{ll} H_0: & \delta_* = p_*^{(1)} - p_*^{(0)} = 0 \\ H_1: & \delta_* = p_*^{(1)} - p_*^{(0)} < 0 \end{array}$$

Sample size formula for composite binary endpoints (n)

$$n_*(p_1^{(0)}, p_2^{(0)}, \delta_1, \delta_2, \rho) = 2 \cdot \left(\frac{z_\alpha + z_\beta}{\delta_*}\right)^2 \cdot \left(p_*^{(0)} \cdot (1 - p_*^{(0)}) + (p_*^{(0)} + \delta_*) \cdot (1 - p_*^{(0)} - \delta_*)\right)$$

Anticipating δ_* and $p_*^{(0)}$ is not an easy task! $p_*^{(i)} = 1 - q_1^{(i)} q_2^{(i)} - \rho \sqrt{p_1^{(i)} p_2^{(i)} q_1^{(i)}}$ $\delta_* = \delta_1 q_2^{(0)} + \delta_2 q_1^{(0)} - \delta_1 \delta_2 + \rho \left(\sqrt{p_1^{(0)} p_2^{(0)} q_1^{(0)} q_2^{(0)}} - \sqrt{(p_1^{(0)} + \delta_1)(p_2^{(0)} + \delta_2)(q_1^{(0)} - \delta_1)(q_2^{(0)} - \delta_2)} \right)$

Sample Size $n_*(p_1^{(0)}, p_2^{(0)}, \delta_1, \delta_2, \rho)$ for the TACTICS trial

Endpoint 1:

Sample size is highly sensitive to the association:

- $\rho = 0.1 \implies n = 2125$
- $\rho = 0.3 \implies n = 2383$
- $\rho = 0.5 \implies n = 2695$
- $\rho = 0.7 \implies n = 3080$

Sample Size $n_*(p_1^{(0)}, p_2^{(0)}, \delta_1, \delta_2)$ varying ρ for the TACTICS trial

- Define correlation categories: WEAK/MODERATE/STRONG
- **2** Compute their corresponding bounds ρ_{min} and ρ_{max}
- Calculate the maximum sample size value in each correlation category

Sample Size and Power for **Intervals** of plausible values for the event rates varying ρ for the TACTICS trial

Solution the based on point values $p_1 = 0.093$, $p_2 = 0.137$ Shaded areas: Based on the intervals $I_1 = [0.078, 0.112]$ and $I_2 = [0.117, 0.157]$.

Binary endpoints

- Other measures of association and their relationships
- Extension to Sequential designs
- Time-to-Event endpoints
 - Flexibility on Recruitment times
 - Implementation of Average Hazard Ratio **AHR** (Kalbfleisch and Prentice)
 - Other HR summaries when proportionality of the hazards is violated.
 - Add **simulation** tools to check statistical significance and power

If your study involves several outcomes, you are interested in their union and you need to know:

- Probability of occurrence of their union
- Odds Ratio of the CE

$$OR_{*} = \frac{\left(\left(1 + \frac{OR_{1}p_{1}^{(0)}}{1 - p_{1}^{(0)}}\right)\left(1 + \frac{OR_{2}p_{2}^{(0)}}{1 - p_{2}^{(0)}}\right) - 1 - \rho\sqrt{\frac{OR_{1}OR_{2}p_{1}^{(0)}p_{2}^{(0)}}{(1 - p_{1}^{(0)})(1 - p_{2}^{(0)})}}\right) \cdot \left(1 + \rho\sqrt{\frac{p_{1}^{(0)}p_{2}^{(0)}}{(1 - p_{1}^{(0)})(1 - p_{2}^{(0)})}}\right)} \\ \left(\left(1 + \frac{p_{1}^{(0)}}{(1 - p_{1}^{(0)})}\right) \cdot \left(1 + \frac{p_{2}^{(0)}}{(1 - p_{2}^{(0)})}\right) - 1 - \rho\sqrt{\frac{p_{1}^{(0)}p_{2}^{(0)}}{(1 - p_{1}^{(0)})(1 - p_{2}^{(0)})}}\right) \cdot \left(1 + \rho\sqrt{\frac{OR_{1}OR_{2}p_{1}^{(0)}p_{2}^{(0)}}{(1 - p_{1}^{(0)})(1 - p_{2}^{(0)})}}\right) \cdot \left(1 + \rho\sqrt{\frac{OR_{1}OR_{2}p_{1}^{(0)}p_{2}^{(0)}}{(1 - p_{1}^{(0)})(1 - p_{2}^{(0)})}}\right)}\right) = 0$$

- Survival and hazard functions for time to the first event
- etc, etc, etc...

DO NOT HESITATE AND USE COMPARE http://cinna.upc.edu/compare/

THANKS A LOT FOR YOUR ATTENTION

This work is partially supported by MTM2015-64465-C2-1-R and MDM-2014-0445 from Spanish Ministry of Economy and Competitiveness (Spain) and 2017 SGR 622 (GRBIO) from Generalitat de Catalunya

G. Gómez, J. Cortés, M. Bofill (UPC)