Conferencia Española de Biometría Sevilla, 15 de septiembre, 2017

Non-proportional hazards. Consequences on required sample sizes

jointly with KyungMann Kim, Moisès Gómez-Mateu

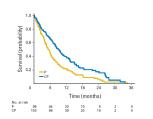
OUTLINE OF THE TALK

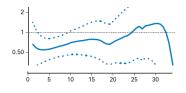
- Hazard Ratio of Composite Endpoints (CE)
- 2 Behaviour of Hazard Ratio over time $HR_*(t)$
- **1** Measures r and R to evaluate non constancy of $HR_*(t)$
- CompARE: Interactive Web platform to study Composite Endpoints and get sample sizes

HAZARD RATIO IN RCT

HR routinely used as a measure to summarize treatment effect on time-to-event endpoints.

HR(t): hazard in treatment group divided by hazard in control group:


$$\mathrm{HR}(t) = rac{\lambda^{(1)}(t)}{\lambda^{(0)}(t)}$$
 for all t


HR(t) depends on the study specific follow-up time.

When $HR(t) \approx h \quad \forall t \implies h$ quantifies the survival-group difference because it might appropriately capture relative treatment effect between treatment arms.

When $HR(t) \neq h \implies$ the average of HR(t) over time is not a meaningful measure, cannot be translated into an understandable clinical benefit and common formulae to calculate sample sizes are not valid.

MOTIVATING EXAMPLE

ECOG trial (1):

Primary endpoint: Overall survival.

Control group: Single-agent pemetrexed (n=98). Treatment group: Carboplatin+pemetrexed (n=103)

Hazard ratio: 0.62 (p-value=0.001)

Estimated HR (2):

HR visually in favour of the new treatment early in the study and then approaching 1 afterwards.

(*) Uno H, et al. Moving Beyond the Hazard Ratio in Quantifying the Between-Group Difference in Survival Analysis. J Clin Oncol. 2014 Aug 1;32(22):2380-5.

⁽¹⁾ Zukin M, et al: Randomized phase III trial of single-agent pemetrexed versus carboplatin and pemetrexed in patients with advanced non-small-cell lung cancer and ECOG performance status of 2. J Cli Onc 31:2849-53,2013.
(2) Uno H, et al. Moving Beyond the Hazard Ratio in Quantifying the Between-Group Difference in Survival Analysis. J Clin

NON CONSTANT HAZARD RATIOS ARE BEING DETECTED MORE FREQUENTLY. WHY IS SO?

- New therapies have different modes of action: the effect of the intervention can diminish after a period of time
- Phase III trials are much larger ⇒ more chances to detect Non constant hazard ratios ≡ Non Proportionals Hazards (NPH)
- To test smaller treatment effects with new and better therapies
 Composite endpoints (CE) used more often
- $CE \Rightarrow NPH$

COMPOSITE ENDPOINTS $\mathcal{E}_* = \mathcal{E}_1 \cup \cup \mathcal{E}_k$

CANCER CLINICAL TRIALS

 T_1 time to Disease progression (\mathcal{E}_1)

 T_2 time to Overall survival (\mathcal{E}_2)

 T_* time to PFS: Progression-free survival (\mathcal{E}_*)

CARDIOVASCULAR STUDIES

 T_1 time to Death (\mathcal{E}_1)

 T_2 time to MI (\mathcal{E}_2)

 T_* time to earlier event between Death and MI (\mathcal{E}_*)

COMPOSITE ENDPOINTS $\mathcal{E}_* = \mathcal{E}_1 \cup \cup \mathcal{E}_k$

CANCER CLINICAL TRIALS

 T_1 time to Disease progression (\mathcal{E}_1)

 T_2 time to Overall survival (\mathcal{E}_2)

 T_* time to PFS: Progression-free survival (\mathcal{E}_*)

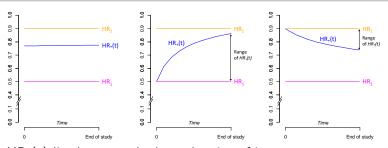
CARDIOVASCULAR STUDIES

 T_1 time to Death (\mathcal{E}_1)

 T_2 time to MI (\mathcal{E}_2)

 T_* time to earlier event between Death and MI (\mathcal{E}_*)

SURVIVAL COMPOSITE ENDPOINTS (CE)


 $T_* = \min\{T_1, T_2\}$ being T_j time from randomization to \mathcal{E}_j

$HR_*(t)$ depends on:

- Joint law of (T_1, T_2) : Frank's copula and Spearman's correlation between T_1 and T_2
- Laws of T_1 and T_2 : Weibull densities, Probabilities of observing T_1 and T_2 in group 0 and constant HR_1 and HR_2

Behavior of the hazard ratio over time

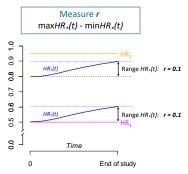
Even if HR_1 and HR_2 are constant $\Rightarrow HR_*(t)$ constant.

- $HR_*(t)$ lies between the hazard ratios of its components
- For two given constant hazard ratios, we can anticipate that the CE will show no less treatment effect than the less effective component.

Under which circumstances $HR_*(t)$ may potentially result in greater departure from constancy?

What is the impact on sample size of erroneoulsly using a constant summary?

Assessment of how $\mathrm{HR}_*(t)$ deviates from Constancy


When $\mathrm{HR}_*(t)$ varies over time, to capture treatment effect we might use:

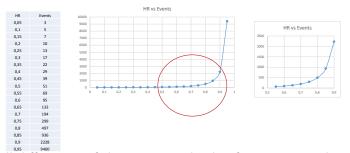
- $MHR_* = \max_t HR_*(t) \equiv \min \max_t detectable$ effect
- $mHR_* = \min_t \mathrm{HR}_*(t) \equiv \mathrm{maximum}$ detectable effect
- ullet $aHR_*=$ average of $\mathrm{HR}_*(t)\equiv$ average detectable effect

Assesment might be based on

- Range $r = MHR_* mHR_*$
- R Relative difference in sample size

APPROPRIATENESS OF RANGE r

If $\mathrm{HR}_*(t) \approx h_*$ constant $\iff MHR_* \approx mHR_* \approx aHR_* \iff r \approx 0$ Different curves $\mathrm{HR}_*(t)$ might entail equal range r with different consequences in needed sample size if aHR_* would be used as summary


Consequences depend on:

- Value of aHR*
- 2 Laws of T_1 and T_2

• Influence of value of aHR*

If $\alpha = 0.05$ and $1 - \beta = 0.8$ and if $HR_*(t) \approx \mathrm{aHR}_*$

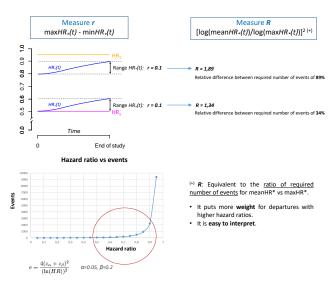
needed events
$$e_* = 4\left(\frac{z_{\alpha} + z_{\beta}}{\log(\mathrm{aHR}_*)}\right)^2$$
; sample size $n_* = \frac{2e_*}{\rho_*^{(0)} + \rho_*^{(1)}}$

Even small differences of the anticipated value for aHR_* can dramatically change the required number of events: for $aHR_* = 0.85 \implies e_* = 936$ while $aHR_* = 0.75 \implies e_* = 299$

¹Schoenfeld (Biometrika, 1981)

 \bullet Laws of T_1 and T_2

$$p_1^{(0)}=0.15,~p_2^{(0)}=0.5,~\mathrm{HR_1}=0.6,~\mathrm{HR_2}=0.9,~\rho=0.3$$
 and The same $r=0.06.$


For $\alpha = 0.05$, $1 - \beta = 0.8$ and if $HR_*(t)$ is summarized by aHR_*

- (A) T_1 increasing hazards, T_2 exponential
 - ightharpoonup $e_{aHR_*}=4\left(rac{z_{lpha}+z_{eta}}{\log(aHR_*)}
 ight)^2=$ 1230 events
- (B) T_1 exponential, T_2 decreasing hazards
 - $e_{aHR_*} = 1094$ events

Range r as a measure of the departure of $\mathrm{HR}_*(t)$ is not convenient if we want to take into account impact on sample size

Relative measure R

$$R = \left(\frac{\log(aHR_*)}{\log(MHR_*)}\right)^2 = \frac{e_{MHR_*}}{e_{aHR^*}} = \frac{n_{MHR_*}}{n_{aHR^*}}$$

Scenarios for studying R

Parameters				
$p_1^{(0)}, p_2^{(0)}$	0.1	0.3	0.5	
HR_1, HR_2	0.6	0.7	0.8	0.9
ho	0.1	0.3	0.5	
Distribution	(Decr. hazards)	(Exponential)	(Incr. hazards)	
β_1, β_2	0.5	1	2	
Number				
of scenarios*	3 888			

TABLE:

 $p_1^{(0)}$, $p_2^{(0)}$: probabilities of observing \mathcal{E}_1 and \mathcal{E}_2 in the control group

ho: Spearman's rank correlation between T_1 and T_2

 HR_1 , HR_2 : constant hazard ratios for \mathcal{E}_1 and \mathcal{E}_2

 $\beta_1,\ \beta_2$: shape parameters of the Weibull distribution for $\ T_1$ and $\ T_2.$

DEPARTURE FROM CONSTANCY IN TERMS OF R

R ratio of required number of events if using constant hazard ratio equal to aHR_{\ast} versus MHR_{\ast}

		R	
	Minimum	Median	Maximum
Treatment effect (HR_1 , HR_2 : hazard ratios for \mathcal{E}_1 , \mathcal{E}_2)			
$HR_1 = HR_2$	1	1.05	1.35
$ HR_1 - HR_2 = 0.1$	1	1.2	3.49
$ HR_1 - HR_2 = 0.2$	1	1.49	8.18
$ HR_1 - HR_2 = 0.3$	1	2.06	15.65
Laws of each component			
Both decreasing hazards ($eta_1=eta_2=0.5$)	1	1.04	1.23
Both exponential $(eta_1=eta_2=1)$	1	1.04	1.28
Both increasing hazards $(\beta_1 = \beta_2 = 2)$	1	1.06	1.44
Different behaviour in hazards $(\beta_1 \neq \beta_2)$	1.01	1.39	15.65
Correlation			
Weak $(ho=0.1)$	1	1.07	14.97
Mild ($\rho = 0.3$)	1.01	1.13	15.19
Moderate ($ ho=0.5$)	1.01	1.18	15.65
Global	1	1.15	15.65

CRITERION TO DECIDE WHETHER aHR_* IS NOT A MEANINGFUL SUMMARY FOR $HR_*(t)$

 $HR_*(t)$ is remarkably non-constant and aHR_* should not be used to assess treatment differences and plan the RCT if R>1.25 because required sample size using MHR_* is 25% larger than that using aHR_*

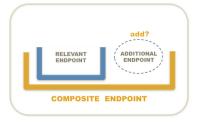
	Treatment effect				
Laws of each component	$HR_1 = HR_2$	$ HR_1 - HR_2 = 0.1$	HR ₁ - HR ₂ = 0.2	$ HR_1 - HR_2 = 0.3$	
Both decreasing hazards	0%	0%	0%	0%	0%
Both exponential	0%	0%	0%	4%	0%
Both increasing hazards	0%	0%	3%	11%	2%
Different behaviour on hazards	2%	65%	93%	98%	60%
	2%	43%	62%	67%	41%

TABLE: Percentages of scenarios where R > 1.25

WARNING:

Be aware if different laws are governing the behaviour of T_1 and T_2 and if expected treatment effects on each outcome are quite apart

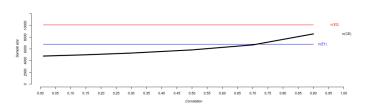
Web for Studying Composite Endpoints


http://cinna.upc.edu/compare/

Home ARE value ARE by correlation (plot) ARE by correlation (table) Sample Size Study of HR*(t) Help

Welcome to Compare platform.

This website will help you to:


- * Analyze whether you should use a Composite endpoint as Primary endpoint.
- * Sample size for time-to-event data.
- * Compare different scenarios depending on your candidate endpoints.
- * Get helpful numerical and intuitive graphical results.

Sample Size as a function of correlation

Sample size depending on different correlations

$$\alpha = 0.05, \ 1-\beta = 0.8, \ \rho_1^{(0)} = 0.05, \ \mathrm{HR}_1 = 0.7 \Rightarrow \mathbf{n_1} = \mathbf{4560} \ \mathrm{patients}$$
 If $\rho_2^{(0)} = 0.05, \ \mathrm{HR}_2 = 0.8 \Rightarrow \mathbf{n_*} = \begin{cases} \mathbf{3699}, \ \mathrm{if} \ \rho = 0.1 \\ \mathbf{4149}, \ \mathrm{if} \ \rho = 0.5 \end{cases}$

WRAPPING UP

- Composite Endpoints (CE) are very often used as PE in phase 3 RCT
- Determination of sample size (SS) is fundamental
- Hazard Ratio summaries are often used
- $HR_*(t)$ often changes over time SS for CE

TAKE HOME MESSAGE: Before planning a RCT with a CE, take into account the expected treatment effect for each component and the laws for the times to each of these events to decide if a constant summary is a good quantification of the treatment effect

ONGOING RESEARCH

- Alternative summary measures when PH fails and CE are being used
- Web interfaces CompARE for Binary and Time-to-event CE

SEE YOU IN BARCELONA IN JULY 2018!!!!!!

XXIXTH INTERNATIONAL BIOMETRIC CONFERENCE

Barcelona International Convention Centre, Barcelona, Spain, 8-13 July, 2018

Home

Welcome & Committees

Scientific Programme

Conference Information

Affiliated Meetings

Sponsorship

Contact Us

Conference Information

Register

Scientific Programme

LATEST UPDATES

03/17/2017	The Call for Invited Sessions is now closed. Thank you for your submitting your entries!
02/22/2017	City of Barcelona Travel Tips

THANK