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Primary endpoints in RCT

Variable (outcome) measuring the clinical evidence. Key decision for the

study because

efficacy of new treatment

power

sample size computation

are based on the primary endpoint

ICH E9 guideline: 1

If a single primary variable cannot be selected from multiple measurements

associated with the primary objective, another useful strategy is to

integrate or combine the multiple measurements into a single or composite

variable, using a predefined algorithm ... This approach addresses the

multiplicity problem without requiring adjustment to type I error.

1ICH: Intern. Conf. Harmon. of Tech. Requir. for Registration of Pharmaceuticals

for Human Use



COMPOSITE ENDPOINTS: good alternative?
E∗: union of a given set of events E1, ...., Ek .

Achieves a better description of the disease process

Achieves higher event rates

Avoids adjustment for multiple comparisons and competing risks

Inspect Positive CE to determine which components are driving the

result

COULD IMPROVE STATISTICAL EFFICIENCY BY
I needing smaller sample sizes
I shorter follow-up times

HOWEVER POWER IS NOT NECESSARILY REDUCED



MANY AREAS WHERE CE ARE USED

1 CANCER CLINICAL TRIALS

T1 time to Disease progression (E1)

T2 time to Overall survival (E2)

T∗ time to PFS: Progression-free survival (E∗)

2 HIV STUDIES

Y1 presence/absence of Virological failure (E1)

Y2 presence/absence of Initiation of new treatment (E2)

Y∗ presence/absence of Loss of virological response (E∗)



BINARY CE IN CARDIOVASCULAR

STUDIES

Binary Composite Endpoints (BCE)

Y∗ = 1{E∗ occurs} = 1{E1 ∪ E2 occurs}

TAXUS-V2 TRIAL of Placlitaxel-eluting vs Bare metal stents for coronary

artery disease patients.

1 E1 = Target-vessel revasc.

2 E2 = Death or MI

3 Y∗ = Presence of Major adverse cardiac events (MACE)

2

2Stone GW, et al. JAMA. 2005



TIME-TO-EVENT CE IN

CARDIOVASCULAR STUDIES

Survival Composite Endpoints (CE)

T∗ = min{T1,T2, · · · ,Tk} being Tj time from randomization to Ej

EXPEDITION TRIAL3 of cariporide vs placebo. High risk patients

undergoing coronary-artery bypass grafting.

1 E1 = Death, T1 time to Death

2 E2 = MI, T2 time to MI

3 T∗ time to earlier event between Death and MI

CONCERN: Positive result (P = 0.0002) for CE, driven by a reduction of

MI (P = 0.00005) but mortality was higher with cariporide

3

3Mentzer et al. Ann Thorac Surg 2008



GOAL: Sample Size for comparing the effect

of two interventions, X = 1 vs X = 0, in

superiority clinical trials with CE or BCE

ENDPOINT E1: T1 or Y1

H1 =

{
H01 : NO EFFECT on E1

H11 : EFFECT on E1

ENDPOINT E2: T2 or Y2

H2 =

{
H02 : NO EFFECT on E2

H12 : EFFECT on E2

COMPOSITE ENDPOINT E∗: T∗ or

Y∗

H∗ =

{
H0∗ : NO EFFECT on E∗
H1∗ : EFFECT on E∗

Concerns with the interpretation

of the effects on E∗

H1, H2 and H∗ ARE NOT EQUIVALENT TESTS !!!!!



General sample size for superiority trials

U1n test for

{
H0 : τ = 0 ≡ NO EFFECT on E1

H1 : τ < 0 ≡ EFFECT on E1

Reject H0 if U1n ≤ Cn for some constant Cn (left one-sided alternatives)

and assume asymptotic normality (for each n, τn is the truth)

√
n(U1n − µ(τn))

v(τn)
→L N(0, 1)

Sample Size (n) required to achieve desired power for level α:

1− β = πn(τ) ≈ 1− Φ
(
zα +

√
n(µ(τ)−µ(0))

v(0)

)

n ≈ (zα+zβ)2(
µ(τ)−µ(0)

v(0)

)2



Sample size formula for binary outcomes Y1

ENDPOINT E1≡ Y1 = 1{E1 occurs}

p
(k)
1 = Prob{Y1 = 1|X = k}, k = 0, 1: probability observing E1 in group k

OR1 =
p

(1)
1 /1−p(1)

1

p
(0)
1 /1−p(0)

1

odds ratio group 1 vs group 0

Assume equal allocation (n1 = n0 = n/2)

H1 =

{
H01 : log(OR1) = 0

H11 : log(OR1) = log(o1) < 0
and U1n is Score Test

n1 = 2
(

zα+zβ
log(o1)

)2

·
(

1

p
(1)
1 q

(1)
1

+ 1

p
(0)
1 q

(0)
1

)
NEED TO ANTICIPATE VALUES: (p

(0)
1 , p

(1)
1 ) or (p

(0)
1 , o1)



Sample size for time-to-event outcomes T1

ENDPOINT E1≡ T1 time from randomization to E1

λ
(k)
1 (t): Hazard function for T1|X = k (k = 0, 1)

HR1(t) =
λ

(1)
1 (t)

λ
(0)
1 (t)

. Assume constant HR1(t) = HR1

Assume equal allocation (n1 = n0 = n/2)

Assume equal censoring in both groups

H1 =

{
H01 : log(HR1) = 0

H11 : log(HR1(t)) = log(h1) < 0
and U1n is Log Rank Test

e1 = 4
(

zα+zβ
log(h1)

)2

and4 n1 = 2e1

p
(0)
1 +p

(1)
1

NEED TO ANTICIPATE VALUES: (p
(0)
1 ,HR1)

4Schoenfeld (Biometrika, 1981)



Both formulas have in common f (x) = 1
log(x)2

S(p
(0)
1 ,OR1) = 2 ·

(
zα + zβ

log(OR1)

)2

·
(

1

p
(1)
1 q

(1)
1

+
1

p
(0)
1 q

(0)
1

)

E(p
(0)
1 ,HR1) = 4

(
zα + zβ

log(HR1)

)2
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ANTICIPATED NEEDED VALUES FOR

SAMPLE SIZE FOR A CE or BCE

OUTCOMES: E1, E2 and E∗
BINARY ENDPOINTS: Y1, Y2 and Y∗

SURVIVAL ENDPOINTS: T1, T2 and T∗

Binary and Time-to-event Endpoints
1 (p

(0)
1 , p

(0)
2 ): Event probabilities in control group

2 (ρ(0), ρ(1)): Association between E1 and E2 for each group

Binary Endpoints

3 (OR1,OR2): Odds Ratios

Time-to-event Endpoints
3 (HR1,HR2): Hazard Ratios
4 Marginal laws for T1 and T2

5 Joint model for (T1, T2) by means of a Copula binding the marginal

laws for T1 and T2



CAN WE USE PREVIOUS FORMULAS TO

GET THE SAMPLE SIZE FOR THE CE?

YES, WE CAN, IF WE ANTICIPATE

Binary Endpoints: (p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ

(0), ρ(1))

Time-to-event Endpoints: (p
(0)
1 , p

(0)
2 ,HR1,HR2, ρ

(0), ρ(1))+ Joint

model for (T1, T2)+HR∗ approximately constant

DIFFICULTIES

1 CORRELATION: Measure of the association between the two events

for each group is needed. Not easy to guess!!

2 JOINT LAW FOR (T1,T2). In survival models we need as well the

joint probabilistic behaviour between T1 and T2. Extra distributional

assumptions!!

3 HAZARD RATIO: Formulas rely on constant hazard ratios



Composite Binary Endpoint: Treatment

effect in terms of Odds Ratio

Endpoint Probability Probability Odds Odds Ratio

control group treat. group

ε1 p
(0)
1 p

(1)
1 O

(0)
1 = p

(0)
1 /q

(0)
1 OR1

ε2 p
(0)
2 p

(1)
2 O

(0)
2 = p

(0)
2 /q

(0)
2 OR2

ε∗ p
(0)
∗ p

(1)
∗ O

(0)
∗ = p

(0)
∗ /q

(0)
∗ OR∗

OR∗ =
(1 + OR1O

(0)
1 )(1 + OR2O

(0)
2 )− 1− ρ(1)

√
OR1OR2O

(0)
1 O

(0)
2

(1 + O
(0)
1 )(1 + O

(0)
2 )− 1− ρ(0)

√
O

(0)
1 O

(0)
2

·
1 + ρ(0)

√
O

(0)
1 O

(0)
2

1 + ρ(1)

√
OR1OR2O

(0)
1 O

(0)
2

Odds Ratio’s function OR(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ

(0), ρ(1))



Correlation bounds5

Correlations ρ(0), ρ(1) are difficult to guess. Previous studies or pilot

studies are a good solution.

Given marginal probabilities (p
(0)
1 , p

(0)
2 , p

(1)
1 , p

(1)
2 ) or equivalently given

θ = (p
(0)
1 , p

(0)
2 ,OR1,OR2) the correlation is bounded and provides a first

constrained set of plausible values

−1 ≤ B
(k)
L (θ) ≤ ρ(k) = Corr(Y

(k)
1 ,Y

(k)
2 ) ≤ B

(k)
U (θ) ≤ 1

B
(k)
L (θ) = max

−
√√√√ p

(k)
1 p

(k)
2

(1− p
(k)
1 )(1− p

(k)
2 )

,−

√√√√(1− p
(k)
1 )(1− p

(k)
2 )

(p
(k)
1 )(p

(k)
2 )


B

(k)
U (θ) = min


√√√√ p

(k)
1 (1− p

(k)
2 )

(1− p
(k)
1 )(p

(k)
2 )

,

√√√√(1− p
(k)
1 )(p

(k)
2 )

p
(k)
1 (1− p

(k)
2 )


5Sozu et al. (Stat Med, 2010)



Correlation bounds when ρ(0) = ρ(1) 6

Assuming ρ = ρ(0) = ρ(1) simplifies matters but is not always realistic.

Given θ = (p
(0)
1 , p

(0)
2 ,OR1,OR2) define

BL(θ) = max{B(0)
L (θ),B

(1)
L (θ)} and BU(θ) = min{B(0)

U (θ),B
(1)
U (θ)},

BL(θ) ≤ ρ ≤ BU(θ)

TAXUS-V: Placlitaxel-eluting vs Bare metal stents

1 Y1 = Occurrence of Target-vessel revasc.
2 Y2 = Occurrence of Death or MI
3 Y∗ = Presence of Major adverse cardiac events (MACE)

θ = (p
(0)
1 , p

(0)
2 ,OR1,OR2) = (0.173, 0.055, 0.67, 0.81)

BL(θ) = max{B(0)
L (θ),B

(1)
L (θ)} = max{−0.11,−0.08} = −0.08

BU(θ) = min{B(0)
U (θ),B

(1)
U (θ)} = min{0.53, 0.58} = 0.53

−0.08 ≤ ρ ≤ 0.53

6Ongoing work with Marta Bofill



TAXUS-V: OR(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ) =

OR(0.173, 0.055, 0.67,OR2, ρ) varying OR2 and ρ

minBL(θ)≤ρ≤BU (θ){OR∗(ρ; θ)} ≤ OR∗(θ) ≤ maxBL(θ)≤ρ≤BU (θ){OR∗(ρ; θ)}

H0∗ : log(OR∗) = 0

H1∗ : log(OR∗) < 0
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1.04 0.722 (0.527) 0.740 (−0.091)

0.90 0.698 (0.527) 0.706 (−0.085)

0.81 0.682 (0.527) 0.684 (0.116)

0.72 0.662 (−0.076) 0.667 (0.527)

0.62 0.637 (−0.071) 0.652 (0.513)



Composite Binary Endpoint: Treatment

effect in terms of difference of event rates

Endpoint Probability Probability Odds Odds Ratio

control group treat. group

ε1 p
(0)
1 p

(1)
1 O

(0)
1 = p

(0)
1 /q

(0)
1 OR1

ε2 p
(0)
2 p

(1)
2 O

(0)
2 = p

(0)
2 /q

(0)
2 OR2

ε∗ p
(0)
∗ p

(1)
∗ O

(0)
∗ = p

(0)
∗ /q

(0)
∗ OR∗

7p
(k)
∗ = 1− q

(k)
1 q

(k)
2 − ρ(k)

√
p

(k)
1 p

(k)
2 q

(k)
1 q

(k)
2

∆p∗ = p
(1)
∗ − p

(0)
∗

Event Rates Difference ∆p∗(p
(0)
1 , p

(0)
2 , p

(1)
1 , p

(1)
2 , ρ(0), ρ(1))

7Bahadur (1961)



TAXUS-V: ∆p∗(p
(0)
1 , p

(0)
2 , p

(1)
1 , p

(1)
2 , ρ) =

∆p∗(0.173, 0.055, 0.122, p
(1)
2 , ρ) varying p

(1)
2 and ρ

For p
(1)
1 − p

(0)
1 = −0.052 and

H0∗ : ∆p∗ = p
(1)
∗ − p

(0)
∗ = 0

H1∗ : ∆p∗ = p
(1)
∗ − p

(0)
∗ < 0

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
02

0.
04

0.
06

0.
08

Correlation

D
iff

er
en

ce
s 

of
 p

ro
po

rt
io

ns
 C

B
E

0.057
0.05
0.045

0.04
0.035

p
(1)
1 − p

(0)
1 = −0.052

p
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2 minρ{∆p∗} (ρ) maxρ{∆p∗} (ρ)

0.002 −0.048 (−0.09) −0.042 (0.53)

−0.005 −0.055 (−0.08) −0.045 (0.53)

−0.010 −0.059 (−0.08) −0.048 (0.53)

−0.015 −0.064 (−0.08) −0.051 (0.53)

−0.020 −0.069 (−0.07) −0.053 (0.51)



Sample Size for Composite Binary Endpoint

Sample Size’s function S(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ

(0), ρ(1))

H0∗ : log(OR∗) = 0

H1∗ : log(OR∗) < 0

S(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ

(0), ρ(1)) = 2 ·
(

zα + zβ
log(OR∗)

)2

·
(

1

p
(1)
∗ q

(1)
∗

+
1

p
(0)
∗ q

(0)
∗

)

For ρ(0) = ρ(1), S(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ) increases with ρ and is bounded

n∗(BL(θ); θ) ≤ n∗(θ) ≤ n∗(BU(θ); θ)



TAXUS-V:

S(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ) = S(0.173, 0.055, 0.67,OR2, ρ)
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OR2 minρ{n∗} (ρ) maxρ{n∗} (ρ)

1.04 1713 (−0.0911) 1838 (0.527)

0.90 1316 (−0.0850) 1533 (0.527)

0.81 1110 (−0.0804) 1365 (0.527)

0.72 948 (−0.0757) 1229 (0.527)

0.62 818 (−0.071) 1109 (0.513)

Conservative approach: Use the upper bound, that is, n∗(BU(θ); θ).



TAXUS-V: Guessing strength of correlation:

S(p
(0)
1 , p

(0)
2 ,OR1,OR2, ρ) = S(0.173, 0.055, 0.67, 0.81, ρ)

Classify correlation strengths:
ρW ≡ Weak

ρM ≡ Moderate

ρS ≡ Strong

Find bounds for sample size: nw∗ (BL(θ); θ) ≤ n∗(ρ
W ; θ) ≤ nw∗ (BU(θ); θ)

Take the upper bound: nW∗ (BU(θ); θ)
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Weak: −0.081 ≤ ρ ≤ 0.1:

nW∗ = 1179

Moderate: 0.1 < ρ ≤ 0.3:

nM∗ = 1262

Strong: 0.3 < ρ ≤ 0.527:

nS∗ = 1365



ONGOING

1 Approximation of Odds Ratio, OR∗, or Log Odds ratio for CE in

terms of marginal parameters. When is (OR1 + OR2)/2 a valid

summary for OR∗?

2 How to deal with OR∗ when ρ(0) 6= ρ(1)? How different is the SS if

ρ(0) = 2ρ(1)?

3 SS under fixed alternatives versus SS under a sequence of contiguous

alternatives closer to the null. Theoretical and practical considerations

4 Complete web interface CompARE for BCE

https://martabofillroig.shinyapps.io/shiny/

https://martabofillroig.shinyapps.io/shiny/


SURVIVAL CE: Defining T∗ from T1 and T2

T1 and T2 via
I Marginal densities
I p1 and p2: Probabilities of observing T1 and T2 in group 0
I HR1 and HR2 constant relative treatment effects on E1 and on E2

Law of T∗: We need the law of (T1,T2).
I Copula linking the marginal densities
I ρ: strength of association between T1 and T2 (we use Spearman’s rank

correlation and assume equal for both groups)

Consider whether T1 or T2 include death. Death precludes the

observation of the other and is a competing cause. It yields 4

different censoring situations that have to be worked separately

because involve different marginal or cause-specific hazards

HR∗(t) time-dependent even if HR1(t) = h1 and HR2(t) = h2



Remark: all the formulas use HR constant,

however ...

HR1 and HR2 constant 6⇒ HR∗(t) constant.
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Figure: HR∗(t) for p
(0)
1 = 0.05, p

(0)
2 = 0.1, HR1 = 0.5, HR2 = 0.9.

Left plot: ρ = 0.1, exponential for T1, T2;

Middle plot: ρ = 0.5, exponential for T1, Weibull increasing hazard rate for T2;

Right plot: ρ = 0.5, Weibull increasing hazard rate for T1, exponential for T2.



Sample size for CE T∗
λ

(k)
∗ (t): Hazard function for T∗|X = k (k = 0, 1)

COMPOSITE ENDPOINT E∗: T∗: HR∗(t) = λ
(1)
∗ (t)

λ
(0)
∗ (t)

H∗ =

{
H0∗ : HR∗(t) = 1

H1∗ : HR∗(t) = h∗ < 1
and Log Rank Test

If HR∗(t) = h∗ is reasonably constant:

e∗ = 4

(
zα + zβ
log(h∗)

)2

and n∗ =
2e∗

p
(0)
∗ + p

(1)
∗

What to do if HR∗(t) is far from being constant?

Use alternative measures. Meaningful option

Take advantage of Asymptotic Relative Efficiency (ARE) between using E1

versus using E∗ = E1 ∪ E2



ARE (Asymptotic Relative Efficiency)

between using E1 versus using E∗ = E1 ∪ E2
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Statistical considerations when using a
composite endpoint for comparing
treatment groups
Guadalupe Gómeza*† and Stephen W. Lagakosb‡

When comparing two treatment groups in a time-to-event analysis, it is common to use a composite event
consisting of two or more distinct outcomes. The goal of this paper is to develop a statistical methodology to
derive efficiency guidelines for deciding whether to expand a study primary endpoint from E1 (for example,
non-fatal myocardial infarction and cardiovascular death) to the composite of E1 and E2 (for example, non-fatal
myocardial infarction, cardiovascular death or revascularisation). We investigate this problem by considering
the asymptotic relative efficiency of a log-rank test for comparing treatment groups with respect to a primary
relevant endpoint E1 versus the composite primary endpoint, say E!, of E1 and E2, where E2 is some additional
endpoint. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: asymptotic relative efficiency; clinical trials; combined outcomes; composite endpoints; log-
rank test

1. Introduction

Composite endpoints are now commonly used in randomised trials for comparing the efficacy of treat-
ments. This is often done in the context of time-to-event analyses, in which case the focus is on the time
from randomisation until the first occurring of any of a specific set of clinical outcomes. For example,
trials for the treatment of cardiovascular disease commonly consider composite endpoints, sometimes
called combined outcomes, consisting of some or all of the following: non-fatal myocardial infarction,
stroke, cardiovascular death and hospitalisation [1]. HIV clinical trials use a variety of composite primary
endpoints to evaluate the efficacy of new antiretroviral drugs such as time to loss of virological response
(TLOVR) or HIV progression-free survival [2]. In oncology treatment trials, clinical disease progression
and death are often combined to assess disease-free survival. Finally, in trials aimed at reducing a spe-
cific type of mortality (say, prostate cancer death in men diagnosed with prostate cancer), the composite
endpoint of all-cause mortality might be used.

Assume that in a given clinical trial we are interested in determining the primary endpoint to answer
the study’s primary clinical question. Suppose that two possible endpoints could answer the question
satisfactorily: we could use a relevant event, say E1, or we might use the composite event, say E!,
of E1 and E2, where E2 is some additional endpoint. For instance, in the prevention of postnatal
mother-to-child HIV transmission, the efficacy and safety of two infant feeding strategies are compared,
and HIV-free survival (by age 18 months), E!, is used as one of the main outcome measures. In
this case, E1 is infant HIV infection, whereas E2 is infant death [3]. More generally, either E1 or E2

can be a composite, for example, in cardiovascular research, as in [1], E1 might be the composite of
cardiovascular death, non-fatal myocardial infarction, non-fatal stroke and resuscitated cardiac arrest,

aUniversitat Politècnica de Catalunya, Barcelona, Spain
bDepartment of Biostatistics, Harvard School of Public Health.
*Correspondence to: Guadalupe Gómez, Departament d’Estadística i I.O., Universitat Politècnica de Catalunya,
Barcelona, Spain.

†E-mail: lupe.gomez@upc.edu
‡This research started as a joint effort by both authors. Unfortunately, the untimely death of Professor Lagakos did not allow
him to contribute to the writing of the manuscript

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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ARE: LogRank for E1 versus LogRank for

E∗ = E1 ∪ E2

U1n ∼ N(0, 1) under H0

U∗n ∼ N(0, 1) under H∗0

U1n ∼ N(µ1, 1) under a sequence of alternatives closer to H0

U∗n ∼ N(µ∗, 1) under a sequence of alternatives closer to H∗0

ARE =

(
µ∗
µ1

)2

ARE (U∗,U1) =

(∫ 1
0 log

{λ(1)
∗ (t)

λ
(0)
∗ (t)

}
f

(0)
∗ (t)dt

)2

(logHR1)2p
(0)
1 p

(0)
∗

=
(ALHR∗)

2p
(0)
∗

(logHR1)2p
(0)
1

ALHR∗: average log hazard ratio. Could be used as alternative measure



How can we use ARE to get n∗ for E∗?10

Pitman’s Interpretation of ARE

ARE ≈ n1
n∗
⇒ n∗ ≈ n1

ARE

n1 and n∗ required sample sizes for U1n and U∗n to have power 1− β at

level α (0 < α < 1− β < 1).

Given (β1, β2, p1, p2, ρ) and taking into acount if T1 or T2 include death,

compute A = ARE(β1, β2, p1, p2, h1, h2, ρ).

For given α and power 1− β
(a) If ARE ≤ 1, use T1 with sample size n1 =

4(zα+zβ)2

(ln(h1))2p
(0)
1

(b) If ARE > 1, use T∗ with sample size

I n∗ =
4(zα+zβ)2

(ln(h∗))2(p
(0)
∗ (t))

if HR∗(t) ≈ h∗ for all t,

II n∗ =
4(zα+zβ)2

A(ln(h1))2p
(0)
1

if HR∗(t) ≤ h∗ for all t, not constant

10Gómez G. and Gómez-Mateu M. (Sort, 2014)



Web for Sample Sizes for Time-to-Event CE
http://cinna.upc.edu:3838/compare/compare_check_2/
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Anticipated values

 



ARE as a function of correlation

 

 

 

 

 

 

 

 

 

 

 



Sample Size as a function of correlation

 

α = 0.05, 1− β = 0.8, p
(0)
1 = 0.05, HR1 = 0.7 ⇒ n1 = 4560 patients

If p
(0)
2 = 0.05, HR2 = 0.8 ⇒ n∗ =

{
3699, if ρ = 0.1

4149, if ρ = 0.5



Non Proportional Hazards (NPH) are being

detected more frequently: Why is so?

Phase III trials are much larger ⇒ more power to detect NPH

Rare events and small effects with new, better therapies ⇒
Composite endpoints used more often ⇒ NPH

If PH holds, HR would partially capture the relative difference between two

survival curves and can be used as a measure to quantify the

between-group difference

Consequences of NPH:

If PH is violated, HR(t) changes over time, the parameter being

estimated is not a meaningful measure of the between-group

difference, is not the average of the true hazard ratio over time.

HR(t) lacks the context to allow to translate the HR into a more

understandable clinical benefit.



Departure from constancy of HR∗(t)11

R = nMHR∗/naHR∗measures impact on sample size for deviance from being

constant.
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Laws of each component HR1 = HR2        |HR1 - HR2|= 0.1 |HR1 - HR2|= 0.2 |HR1 - HR2|= 0.3

Both decreasing hazards 0% 0% 0% 0% 0%

Both exponential 0% 0% 0% 4% 0%

Both increasing hazards 0% 0% 3% 11% 2%

Different behaviour on hazards 2% 65% 93% 98% 60%

2% 43% 62% 67% 41%

Treatment effect

11Ongoing work with Moisès Gómez-Mateu and KyungMann Kim



WRAPPING UP

Composite Endpoints (CE) are very often used as PE in phase 3 RCT

Phase 3 RCT are usually powered to achieve clinically relevant

outcomes and Determination of sample size (SS) is fundamental. It is

not an easy task when the PE is a CE

HR∗(t) is often not constant

Correlations difficult to guess

OR∗ difficult to get

ARE as a tool to compute required SS for CE

ONGOING RESEARCH
1 Formulae when ρ(0) 6= ρ(1)

2 Average log hazard ratio as alternative summary measures when PH

fails

3 Finish web interface CompARE for time-to-event CE

4 Unify web interfaces CompARE for Binary and Time-to-event CE



THANKS TO MY COAUTHORS AND TO STEVE





See you in Barcelona in JULY 2018 !!!!!!
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