SELECTING THE PRIMARY ENDPOINT IN A RANDOMIZED CLINICAL TRIAL. How efficient is to add a new component to the primary endpoint?

> Guadalupe Gómez Universitat Politècnica de Catalunya, Barcelona, Spain

> > Department of Biostatistics Harvard School of Public Health November 21st, 2014

(日) (四) (三) (三) (三)

Randomized Clinical Trials

- Goal: demonstrate the efficacy of a new drug
- Primary endpoint of a RCT: Outcome defined by the research question of interest
- Should be amenable to unbiased assessment and potentially influenced by the treatment

Improvements in medical management have led to:

- \bullet Decline in mortality and morbidity for several common disorders \Rightarrow Low event rates
- Decline in the incidence of clinically relevant outcomes ⇒ Reduction in the number of relevant events

個人 くほん くほん

• Improved standard of care \Rightarrow Lower effect sizes

HENCE **relevant endpoints** are observed **less often** and the effect of treatment is **diminished**

Randomized Clinical Trials

- Goal: demonstrate the efficacy of a new drug
- Primary endpoint of a RCT: Outcome defined by the research question of interest
- Should be amenable to unbiased assessment and potentially influenced by the treatment

Improvements in medical management have led to:

- Decline in mortality and morbidity for several common disorders \Rightarrow Low event rates
- Decline in the incidence of clinically relevant outcomes ⇒ Reduction in the number of relevant events

▶ < 토▶ < 토▶ .

• Improved standard of care \Rightarrow Lower effect sizes

HENCE relevant endpoints are observed less often and the effect of treatment is diminished

Composite Endpoints

Composite event: union of a given set of events

Composite endpoint (CE): occurrence of first event, among a given set of events, after a certain period of follow-up.

Why to use Composite Endpoints?:

- A better description of the disease process
- ② Gets higher event rates
- O Avoids adjustment for multiple comparisons
- Avoids interpretational problems due to competing risks
- In the second statistical efficiency and needs
 In the second statistical efficiency and needs
 - smaller sample sizes
 - shorter follow-up times

Composite Endpoints

Composite event: union of a given set of events

Composite endpoint (CE): occurrence of first event, among a given set of events, after a certain period of follow-up.

Why to use Composite Endpoints?:

- A better description of the disease process
- ② Gets higher event rates
- Avoids adjustment for multiple comparisons
- Avoids interpretational problems due to competing risks
- 6 Hopefully improves statistical efficiency and needs
 - smaller sample sizes
 - shorter follow-up times

COMPOSITE ENDPOINTS IN SELECTED THERAPEUTIC AREAS

CANCER CLINICAL TRIALS

DP: Disease progression OS: Overall survival PFS: Progression-free survival

CARDIOVASCULAR DISEASE STUDIES Cardiovascular death, myocardial infarction, stroke Hospitalization MACE: Major Advance Cardiovascular Events

MACE: Major Adverse Cardiovascular Events

B HIV STUDIES

Virological failure Initiation of new treatment due to intolerance/toxicity TLOVR: Time to loss of virological response

COMPOSITE ENDPOINTS IN SELECTED THERAPEUTIC AREAS

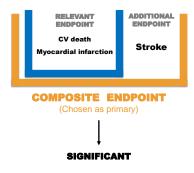
CANCER CLINICAL TRIALS

DP: Disease progression OS: Overall survival PFS: Progression-free survival

CARDIOVASCULAR DISEASE STUDIES

Cardiovascular death, myocardial infarction, stroke Hospitalization MACE: Major Adverse Cardiovascular Events

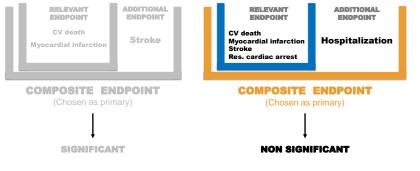
HIV STUDIES


Virological failure Initiation of new treatment due to intolerance/toxicity TLOVR: Time to loss of virological response

Choosing the Primary Endpoint: An important decision

• LIFE⁽¹⁾ study:

- Control group (n = 4588)
- Losartan (n = 4605)


¹ Dahlöf B et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol (2002).*Lancet*, 359:995–1003.

▶ < ≣ ▶

Choosing the Primary Endpoint: An important decision

- LIFE⁽¹⁾ study:
 - Control group (n = 4588)
 - ▶ Losartan (n = 4605)

- ARISE⁽²⁾ trial:
 - Control group (n = 3066)
 - Succinobucol (n = 3078)

¹ Dahlöf B et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertersony study (LIFE): a randomised trial against atenolol (2002).*Lancet*, 359:995–1003.

² Tardif JC et al. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial(2008). *The Lancet.* 371, Issue 9626, 1761-1768

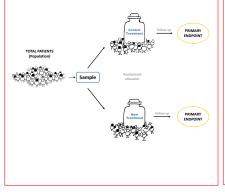
Goals of the Talk

Statistical methodology (ARE) to guide the choice of the primary endpoint

- CompARE: Web platform to facilitate the decision between CE and RE as the primary endpoint of the RCT
- Extension to Binary Composite Endpoints. Preliminar ideas

Goals of the Talk

- Statistical methodology (ARE) to guide the choice of the primary endpoint
- CompARE: Web platform to facilitate the decision between CE and RE as the primary endpoint of the RCT
- Extension to Binary Composite Endpoints. Preliminar ideas


Goals of the Talk


- Statistical methodology (ARE) to guide the choice of the primary endpoint
- CompARE: Web platform to facilitate the decision between CE and RE as the primary endpoint of the RCT
- Sector Strain St

CONTEXT AND NOTATION

RCT for comparing the efficacy of new treatment j = 1 versus standard of care j = 0

- RELEVANT ENDPOINT T₁ =time to E₁: time to first between CV death; cardiac arrest; MI; stroke
- ADDITIONAL ENDPOINT T_2 =time to \mathcal{E}_2 : time to hosp
- COMPOSITE ENDPOINT $T_* =$ time to $\mathcal{E}_1 \cup \mathcal{E}_2$: time to MACE.

1

TESTING THE TREATMENT EFFECT: TWO SETS OF HYPOTHESIS

If Primary Endpoint is based on \mathcal{T}_1 =time to \mathcal{E}_1

- H₀ : Treatment has **No EFFECT** on time to RELEVANT ENDPOINT
- H₁: **EFFECT** of treatment on time to RELEVANT ENDPOINT

If Primary Endpoint is based on $T_* = \min(T_1, T_2)$, the composite of \mathcal{E}_1 and \mathcal{E}_2 where $T_2 =$ time to \mathcal{E}_2 is an additional endpoint.

• *H*^{*}₀ :Treatment has **No EFFECT** on time to COMPOSITE ENDPOINT

• H_1^* : **EFFECT** of treatment on time to COMPOSITE ENDPOINT

TESTING THE TREATMENT EFFECT: TWO SETS OF HYPOTHESIS

If Primary Endpoint is based on \mathcal{T}_1 =time to \mathcal{E}_1

- H₀ : Treatment has **No EFFECT** on time to RELEVANT ENDPOINT
- H1: EFFECT of treatment on time to RELEVANT ENDPOINT

If Primary Endpoint is based on $T_* = \min(T_1, T_2)$, the composite of \mathcal{E}_1 and \mathcal{E}_2 where $T_2 = \text{time to } \mathcal{E}_2$ is an additional endpoint.

- *H*₀^{*} :Treatment has **No EFFECT** on time to COMPOSITE ENDPOINT
- H_1^* : **EFFECT** of treatment on time to COMPOSITE ENDPOINT

ARE methodology

- Testing H_0 vs H_1 : Logrank test Z for T_1
 - Distinction of censoring cases
- **2** Testing H_0^* vs H_1^* : Logrank test Z_* for T_*
 - Copula Model for (T_1, T_2)
- Solution Symptotic Relative Efficiency of Z_* versus Z: ARE(Z_*, Z) ⁽¹⁾
 - Representation of $ARE(Z_*, Z)$ in terms of anticipatable parameters
 - ARE as ratio of sample sizes
 - Decision: robust with respect to the copula chosen
- OmpARE: Web Platform to facilitate computations

(1) Gómez G. and Lagakos S.W. Statistical considerations when using a composite endpoint for comparing treatment groups (2013). Statistics in Medicine, 32, 719–738.

3. Methodology Censoring cases

Censoring cases: is death one of the components?

- \mathcal{E}_2 does not contain death
 - Case 1: \mathcal{E}_1 does not contain death
 - Case 3: *E*₁ contains death
 - T₁ censored by C (end-of-study censoring)
 - *T*_{*} censored by *C*
 - equal censoring in treatment groups
- \mathcal{E}_2 contains death
 - Case 2: \mathcal{E}_1 does not contain death
 - Case 4: \mathcal{E}_1 contains death
 - T_1 censored by min(C, T_2)
 - ► *T*_{*} censored by *C*
 - Unequal censoring in treatment groups when treatment affects T₂

Each censoring case has to be worked separately because involver different marginal or cause-specific hazards

3. Methodology Censoring cases

Censoring cases: is death one of the components?

- \mathcal{E}_2 does not contain death
 - Case 1: \mathcal{E}_1 does not contain death
 - Case 3: *E*₁ contains death
 - ► *T*₁ censored by *C* (end-of-study censoring)
 - T_{*} censored by C
 - equal censoring in treatment groups
- \mathcal{E}_2 contains death
 - Case 2: \mathcal{E}_1 does not contain death
 - Case 4: \mathcal{E}_1 contains death
 - T_1 censored by min(C, T_2)
 - T_{*} censored by C
 - Unequal censoring in treatment groups when treatment affects T₂

Each censoring case has to be worked separately because involve different marginal or cause-specific hazards

Z: Logrank test for T_1 (depends on censoring case)

- Cases 1-3: $\lambda_1^{(0)}(t)$, $\lambda_1^{(1)}(t)$ marginal hazards for \mathcal{T}_1
- Cases 2-4: $\lambda_{C1}^{(0)}(t)$, $\lambda_{C1}^{(1)}(t)$ cause-specific hazards for T_1 when T_2 is a competing cause for T_1

• $H_0: HR(t) = \frac{\lambda_1^{(1)}(t)}{\lambda_1^{(0)}(t)} = 1 \Leftrightarrow NO \text{ EFFECT on } T_1 \text{ (cases 1-3)}$

• Logrank $Z \sim N(0,1)$ under H_0

Z: Logrank test for T_1 (depends on censoring case)

- Cases 1-3: $\lambda_1^{(0)}(t)$, $\lambda_1^{(1)}(t)$ marginal hazards for \mathcal{T}_1
- Cases 2-4: $\lambda_{C1}^{(0)}(t)$, $\lambda_{C1}^{(1)}(t)$ cause-specific hazards for T_1 when T_2 is a competing cause for T_1

•
$$H_0: \operatorname{HR}(t) = rac{\lambda_1^{(1)}(t)}{\lambda_1^{(0)}(t)} = 1 \Leftrightarrow \mathsf{NO} \;\mathsf{EFFECT} \;\mathsf{on} \; \mathcal{T}_1 \;\mathsf{(cases 1-3)}$$

• Logrank $Z \sim N(0,1)$ under H_0

Z: Logrank test for T_1 under H_1

- View $\lambda_1^{(0)}(\cdot)$ as fixed, let $\lambda_{1,n}^{(1)}(\cdot)$ vary with *n*, and define the sequence: $H_{1,n}: \log \operatorname{HR}_n(t) = \log \left(\frac{\lambda_{1,n}^{(1)}(t)}{\lambda_1^{(0)}(t)} \right) = \frac{g(t)}{\sqrt{n}}$
- $Z \sim N(\mu, 1)$ ⁽¹⁾ where

$$\frac{\mu}{\sqrt{n}} = \frac{\int_0^\infty p(t)[1-p(t)]\log\left\{\mathrm{HR}_n(t)\right\}V(t)dt}{\sqrt{\int_0^\infty p(t)[1-p(t)]V(t)dt}}$$

▶ $p(t) = P_{H_0}(X = 1 | U \ge t)$ ▶ $V(t) = P_{H_0}(U \ge t)\lambda_1^{(0)}(t)dt = P_{H_0}(T_1 > t, C \ge t)\lambda_1^{(0)}(t)dt$ null sub-density function of observing a T_1 event at time t.

《口》 《聞》 《臣》 《臣》

- 2

¹ Lagakos S.W. and Schoenfeld, D. Properties of Proportional-Hazards Score Tests under Misspecified Regression Models (1984). *Biometrics*, **40**, 1037–1048.

Z_* : Logrank test for T_* (the same for 4 censoring cases)

•
$$\lambda_*^{(0)}(t)$$
, $\lambda_*^{(1)}(t)$ hazards for T_*

- $H_0^*: \operatorname{HR}_*(t) = \frac{\lambda_*^{(1)}(t)}{\lambda_*^{(0)}(t)} = 1 \Leftrightarrow \operatorname{NO} \mathsf{EFFECT} \mathsf{ on } T_*$
- $Z_* \sim N(0, 1)$ under H_0^*
- $Z_* \sim N(\mu_*, 1)$ under $H_{*,n} := \log\left(\frac{\lambda_{*,n}^{(1)}(t)}{\lambda_*^{(0)}(t)}\right) = \frac{g_*(t)}{\sqrt{n}}$

$$\frac{\mu_*}{\sqrt{n}} = \frac{\int_0^\infty p_*(t)[1-p_*(t)]\log\left\{\frac{\lambda_{*,n}^{(1)}(t)}{\lambda_{*}^{(0)}(t)}\right\}V_*(t)dt}{\sqrt{\int_0^\infty p_*(t)[1-p_*(t)]V_*(t)dt}}$$

- ▶ We need the law of (*T*₁, *T*₂). We'll discuss later
- ▶ $p_*(t) = P_{H_0^*}(X = 1 | U_* \ge t)$ null prob. someone at risk at *t* is in g ▶ $V_*(t) = P_{H_0}(U_* \ge t)\lambda_*^{(0)}(t)dt = P_{H_0^*}(T_* > t, C \ge t)\lambda_*^{(0)}(t)dt$ null sub-density function of observing a T_* event at time t 표 문 표

Asymptotic Relative Efficiency (ARE)

ARE TO ASSESS RELATIVE EFFICIENCY BETWEEN \mathcal{E}_1 VERSUS COMPOSITE $\mathcal{E}^* = \mathcal{E}_1 \cup \mathcal{E}_2$

e $Z \sim \mathcal{N}(\mu,1)$ $Z_* \sim \mathcal{N}(\mu_*,1)$

ARE
$$(Z_*, Z) = \left(\frac{\mu_*}{\mu}\right)^2$$

We will assume:

- Equal number of subjects in the two treatment groups.
- End-of-study censoring C at time τ is the only noninformative censoring cause
- C identical across groups.
- HR_1 and HR_2 : Constant treatment hazard ratios for T_1 and T_2

ARE derived in terms of interpretable parameters

ARE
$$(Z_*, Z) = \left(\frac{\mu_*}{\mu}\right)^2 = \frac{\left(\int_0^1 \log\left\{\frac{\lambda_*^{(1)}(t)}{\lambda_*^{(0)}(t)}\right\} f_*^{(0)}(t)dt\right)^2}{(\log \mathrm{HR}_1)^2 (\int_0^1 f_*^{(0)}(t)dt) (\int_0^1 f_1^{(0)}(t)dt)}$$

- It depends on the relevant endpoint T_1 via
 - Marginal density $f_1^{(0)}(t)$ (assumed Weibull)
 - p_1 = Probability of observing T_1 in group 0
 - $\operatorname{HR}_1 = \frac{\lambda_1^{(1)}(t)}{\lambda_1^{(0)}(t)}$ relative treatment effect on \mathcal{E}_1
- It depends on the joint distribution of (T_1, T_2) via:
 - Copula binding the marginal densities (both assumed Weibull).
 Technicalities later
 - ▶ ρ : Spearman's rank correlation between $T_1^{(0)}$ and $T_2^{(0)}$ (assumed equal for both groups)

御 と く ヨ と く ヨ とし

- p_2 = Probability of observing T_2 in group 0
- HR₂ = $\frac{\lambda_2^{(1)}(t)}{\lambda_2^{(0)}(t)}$ relative treatment effect on \mathcal{E}_2

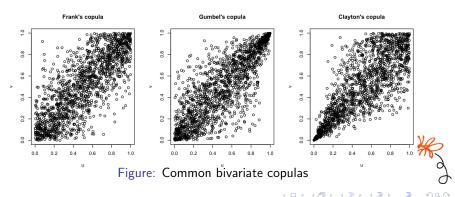
Interpretation of ARE. Criterion for Decision

 $ARE(Z_*, Z) > 1 \Rightarrow T_*$ more efficient than $T_1 \Rightarrow$ Use composite endpoint

$$\begin{array}{l} \hline \text{ARE} \approx \frac{n}{n_{*}} \Rightarrow \text{Usual interpretation of ARE holds:} \\ \hline \text{Given } 0 < \alpha < \Pi < 1, \\ & \lim_{\text{HR}_{1,n}(t) \to 1} \frac{n}{n_{*}} = \text{ARE}(Z_{*}, Z). \\ & \text{HR}_{2,n}(t) \to 1 \end{array}$$

where *n* and *n*_{*}: sample sizes required for Z_n and $Z_{n_*}^*$ to have power $\geq \Pi$ at level α .

Gómez G. and Gómez-Mateu M. The Asymptotic Relative Efficiency and the ratio of sample sizes when testing two difference hypotheses (2014). SORT, 38, 73–88.


Summary of method

- Set values for $p_1, p_2, \text{HR}_1, \frac{\text{HR}_2}{\rho}, \rho$
- **2** Assume Weibull $(b_1^{(j)}, \beta_1^{(j)})$ for T_1 and Weibull $(b_2^{(j)}, \beta_2^{(j)})$ for T_2
- So Assume $\beta_k = \beta_k^{(0)} = \beta_k^{(1)}$ (for k = 1, 2) so that the proportionality of the hazards holds
- Set values for shape parameters β_1 and β_2
- Ompute scale parameters as
- b₁⁽⁰⁾(p₁, β₁) = 1/((-log(1-ρ₁))^{1/β₁})
 b₂⁽⁰⁾(p₂, β₂) = 1/((-log(1-ρ₂))^{1/β₂}) if E₁ does not include a terminating event
 b₂⁽⁰⁾(p₁, p₂, ρ, β₁, β₂) is the solution of p₂ = ∫₀¹ ∫_v[∞] f_(1,2)⁽⁰⁾(u, v; θ) dudv if E₁ includes a terminating event
 b_k⁽¹⁾(b_k⁽⁰⁾, β_k, HR_k) = b_k⁽⁰⁾/(HR_k^{1/β_k} for k = 1, 2
 Get association parameter θ from Spearman's ρ
 Compute Copula C(S_{T1}(t₁), S_{T2}(t₂); θ) for both groups (X = 0 a)
- **6** Get ARE (Z_*, Z) as function of $p_1, p_2, \text{HR}_1, \text{HR}_2, \rho$

Copula model for (T_1, T_2)

A copula is a bivariate distribution on uniform random variables:

- marginal distributions $F_1(t)$, $F_2(t)$ are binded to form the joint $F(t_1, t_2; \theta) = C(F_1(t_1), F_2(t_2); \theta)$
- θ parameterises the dependence between the margins
- Different types of dependence can be represented

Frank's copula for (T_1, T_2)

Frank's copula function:

$$C(u_1, u_2; heta) = - heta^{-1} \log \left\{ 1 + rac{(e^{- heta u_1} - 1)(e^{- heta u_2} - 1)}{e^{- heta} - 1}
ight\}$$

- \blacktriangleright $\theta,$ 1-1 function of Spearman's $\rho,$ accounts for the dependency between T_1 and T_2
- **2** Joint density function for (T_1, T_2) :

$$f_{(T_1,T_2)}(t_1,t_2;\theta) = \frac{\theta}{1-e^{-\theta}} \frac{e^{-\theta(S_{T_1}(t_1)+S_{T_2}(t_2))}}{e^{-2\theta C(t_1,t_2;\theta)}} [f_{T_1}(t_1)][f_{T_2}(t_2)]$$

Solution Density function of $T_* = \min\{T_1, T_2\}$

$$f_{*}(t;\theta) = \frac{e^{-\theta S_{T_{1}}(t)}(e^{-\theta S_{T_{2}}(t)}-1)f_{T_{1}}(t)}{e^{-\theta C(S_{T_{1}}(t),S_{T_{2}}(t);\theta)}(e^{-\theta}-1)} + \frac{e^{-\theta S_{T_{2}}(t)}(e^{-\theta S_{T_{1}}(t)}-1)f_{T_{2}}(t)}{e^{-\theta C(S_{T_{1}}(t),S_{T_{2}}(t);\theta)}(e^{-\theta}-1)}$$

3. Methodology Copulas

ARE Comparison for Frank, Gumbel and Clayton copulas

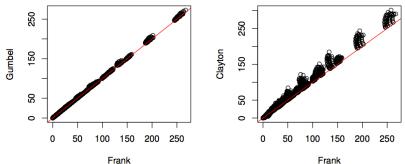


Figure: Pairwise ARE correlations based on 72576 simulated situations

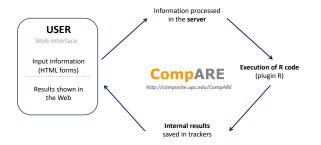
Comparisons	Pearson's ρ	Spearman's ρ	Kendall's τ
Frank - Gumbel	0.99987	0.99946	0.98229
Frank - Clayton	0.99701	0.99150	0.92735

Plana, O. and Gómez G. Selecting the primary endpoint in a randomized clinical trial. The ARE method. (Submitted)

Robustness w.r.t. choice of the copula

	$ARE_{Gumbel} > 1$	$ARE_{Gumbel} \leq 1$	$ARE_{Clayton} > 1$	$ARE_{Clayton} \leq 1$
$ARE_{Frank} > 1$	59.5%	0.02%	59.2%	0.4%
$\textit{ARE}_{\textit{Frank}} \leq 1$	1.9%	38.5%	4.9%	35.6%

Degree of agreement Frank - Gumbel \rightarrow 98.0% Degree of agreement Frank - Clayton \rightarrow 94.7%

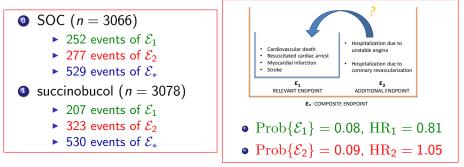

DISCORDANT CASES =7%

Discordant cases	n	mean (SD)	min	Q_1	median	Q_3	P_{95}	max
$ ARE_F - ARE_G $	1426	0.04 (0.03)	0.004	0.02	0.05	0.06	0.11	0.14
$ ARE_F - ARE_C $	3812	0.11 (0.08)	0.001	0.04	0.09	0.17	0.27	0.36

ONLY 1.6% cases with $|ARE_F - ARE_C| > 0.15$ corresponding to $HR_1 = HR_2$ or $HR_1 = HR_2 - 0.1$ and $\rho \ge 0.45$

CompARE interface

- Free and easy to use
- Knowledge of R not needed
- Accessible anywhere (laptop/mobile/tablet)
- Compatible with any operating system and browser
- Complete users' guide documentation



Software used to built the Interface

- Tiki= Tightly Integrated Knowledge Infrastructure. Free and Open Source Web Application with built-in features.
- Wiki: Website which allows its users to add, modify, or delete its content via a web browser usually using a simplified markup language or a rich-text editor

Treating patients after an acute coronary syndrome with succinobucol (Tardif *et al.* Lancet 2008)

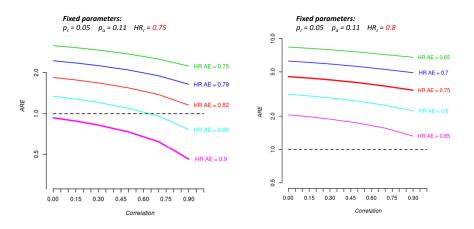
6144 patients randomized to receive succinobucol in addition to SOC:

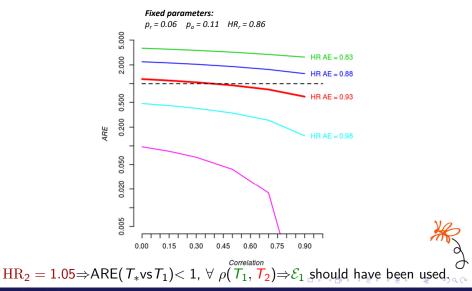
- Beneficial effect of succinobucol (p = 0.029) on \mathcal{E}_1
- Failed to show significant differences on \mathcal{E}_* .
- Hospital admission component MASKED the mortality effect

- 4 間 ト 4 注 ト 4 注 ト

Analysis with **CompARE**

Relevant endpoints: CV death, Resusc CA, MI, Stroke Additional endpoints: Hospitalizations


Information about all the candidate endpoints for your trial 🏁


(You can modify the parameter values and run it again)

Candidate endpoint E	Terminating? (click if yes)	Probability of observing E in control group	Hazard Ratio	Type of endpoint	Definition of the composite	
Cardiovascular death		0.02	0.98	Relevant component 🗸	✓	
Resu. card. arrest		0.002	0.99	Relevant component 🗸	✓	
Myocardial infarction		0.05	0.83	Relevant component 🗸	✓	
Stroke		0.01	0.63	Relevant component 🗸	>	Add
						Rows? 兒
Hosp. (Unest. angina)		0.04	1.1	Additional component 🗸	✓	✓
Hosp. (Revasc.)		0.11	1.05	Additional component 🗸	✓	
Advanced Features	(Optional)					
[-]						
	Terminating?	Probability* Hazard Ratio	o* Shape pa	arameter of the Weibull I	Distribution	
Combined Relevant endpo	oint Yes 🗸	0.05 0.75	Constant	Hazard Rate (ß: 1) (Expone	ntial) 🗸	
Combined Additional endp	ooint No 🗸	0.11 0.9	Constant	Hazard Rate (ß: 1) (Expone	ntial) 🗸	
Correlation			Moderate	e (p: 0.5)		

Analysis with **CompARE**

\mathcal{E}_* would have been justified if $HR_2 \leq 0.88$

Other outputs

• Survival and Hazard Ratio functions

• Numerical results in tables

ARE results depending on different correlation values and Hazard Ratios

Fixed parameters:		Hazard Ratio AE	Correlation	ARE	Recommendation
Probability RE (Control group)	0.15	0.9	0	0.64	Use RE
Probability AE (Control group)	0.3	0.9	0.15	0.56	Use RE
Hazard Ratio RE	0.7	0.9	0.3	0.49	Use RE
Distribution RE	Increasing Hazard Rate	0.9	0.5	0.39	Use RE
Distribution AE	Constant Hazard Rate (exponential)	0.9	0.7	0.3	Use RE
		0.9	0.9	0.21	Use RE
		0.7	0	2.78	Use CE
		0.7	0.15	2.59	Use CE
		0.7	0.3	2.4	Use CE
		0.7	0.5	2.18	Use CE
		0.7	0.7	1.99	Use CE
		0.7	0.9	1.9	Use CE

- Reported recommendations in text
- List of previous results

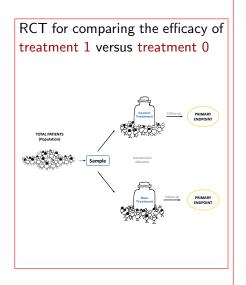
**

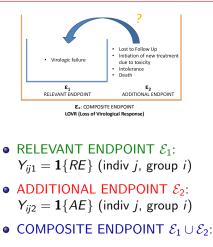
Binary Composite Endpoints. Instances in HIV

TEMPTATIVE PRIMARY BINARY ENDPOINTS

- Relevant: Virologic failure (increase in plasma HIV of RNA greater than 200 copies/ml)
 - Additional: Lost to Follow Up/ Initiation of new treatment due to toxicity /Intolerance/ Death
 - LOVR (Loss of Virological Response): Virologic failure OR Lost to Follow Up/ Initiation of new treatment due to toxicity /Intolerance/ Death
 - RE: Virologic failure (efficacy)
 - AE: Adverse effects (safety)
 - Binary CE: Virologic failure OR Adverse effects
 - ▶ RE: CD4 cell < 250
 - AE: Initiation of Antiretroviral therapy
 - ▶ Binary CE: CD4 cell < 250 OR Initiation of Antiretroviral therapy

▲圖▶ ▲屋▶ ▲屋▶


Binary Composite Endpoints. Instances in HIV


TEMPTATIVE PRIMARY BINARY ENDPOINTS

- Relevant: Virologic failure (increase in plasma HIV of RNA greater than 200 copies/ml)
 - Additional: Lost to Follow Up/ Initiation of new treatment due to toxicity /Intolerance/ Death
 - LOVR (Loss of Virological Response): Virologic failure OR Lost to Follow Up/ Initiation of new treatment due to toxicity /Intolerance/ Death
- RE: Virologic failure (efficacy)
 - AE: Adverse effects (safety)
 - Binary CE: Virologic failure OR Adverse effects
 - ► RE: CD4 cell < 250
 - AE: Initiation of Antiretroviral therapy
 - ▶ Binary CE: CD4 cell < 250 OR Initiation of Antiretroviral therapy

CONTEXT AND NOTATION

Notation

•
$$Y_{ij1} = \mathbf{1}\{RE\}$$
 with $p_{i1} = P(Y_{ij1} = 1)$ and
 $Y_{i1} = \sum_{j=1}^{N_i} Y_{ij1} \sim Bin(N_i, p_{i1})$, number responding to RE

•
$$Y_{ij2} = \mathbf{1}\{AE\}$$
 with $p_{i2} = P(Y_{ij2} = 1)$ and
 $Y_{i2} = \sum_{j=1}^{N_i} Y_{ij2} \sim Bin(N_i, p_{i2})$, number responding to AE

•
$$Y_{ij*} = \begin{cases} 1 & \text{if } Y_{ij1} + Y_{ij2} \ge 1 \\ 0 & \text{if } Y_{ij1} + Y_{ij2} = 0 \end{cases}$$
 with $p_{i*} = P(Y_{ij*} = 1)$ and $Y_{i*} = Y_{i1} + Y_{i2} \sim Bin(N_i, p_{i*})$, number responding to either RE or AE

▲ロト ▲圖ト ▲屋ト ▲屋ト

æ

Relationship between p_{i1} , p_{i2} and p_{i*} via Bahadur's general form

Bahadur's theorem

The joint distribution between any pair of binary random variables is uniquely determined by the probabilities p_{i1} , p_{i2} and $\rho_i = Corr(Y_{ij1}, Y_{ij2})$,

$$P[Y_{ij1} = y_{ij1}, Y_{ij2} = y_{ij2}] = \prod_{k=1}^{2} \left(p_{ik}^{y_{ijk}} \cdot q_{ik}^{1-y_{ijk}} \right) \left(1 + \rho_i \cdot z_{ij1} \cdot z_{ij2} \right), \quad i = 0, 1$$

where $z_{ijk} = \frac{y_{ijk} - p_{ik}}{\sqrt{p_{ik}q_{ik}}}$ and $q_{ik} = 1 - p_{ik}$.

Definition of p_{i*}

The probability that an individual in group *i* has at least one response is

$$p_{i*} = 1 - P[Y_{ij*} = 0] = 1 - q_{i1}q_{i2} - \rho_i \sqrt{p_{i1}p_{i2}q_{i1}q_{i2}}$$

Hypothesis of no treatment effect

Null Hypothesis

• $H_0: p_{01} = p_{11} \Leftrightarrow OR_1 = \frac{p_{11}/1 - p_{11}}{p_{01}/1 - p_{01}} = 1$

• $H_0^*: p_{0*} = p_{1*} \Leftrightarrow OR_* = \frac{p_{1*}/1 - p_{1*}}{p_{0*}/1 - p_{0*}} = 1 \Leftrightarrow$ $q_{01}q_{02} + \rho_0 \sqrt{p_{01}p_{02}q_{01}q_{02}} = q_{11}q_{12} + \rho_1 \sqrt{p_{11}p_{12}q_{11}q_{12}}$

Equivalent null hypothesis??? $H_0: p_{01} = p_{11} \Leftrightarrow H_0^*: p_{0*} = p_{1*}$ However, if $p_{01} = p_{11}$ and $p_{02} = p_{12}$ and $\rho_0 = \rho_1 \implies H_0^*: p_{0*} = p_{1*}$ Assumption: $\rho_0 = \rho_1 = \rho \rightsquigarrow$ Reasonable

Two Sample Binomial test statistics

Under $H_0: p_{01} = p_{11}$ • $\tilde{p}_1 = \frac{Y_{01} + Y_{11}}{N_0 + N_1}$, common consistent estimator of p_{01} and p_{11} • $T_1 = \sqrt{N_0 + N_1} \frac{(N_0 Y_{11} - N_1 Y_{01})}{\sqrt{N_0 N_1 \tilde{p}_1 \tilde{q}_1}} \sim N(0, 1)$ Under $H_{1,n}$: sequences of alternatives that converge to H_0 • $T_1 \sim N(\mu_1, 1)$ • $\mu_1^2 = \pi (1 - \pi) (\log(OR_1))^2 p_{01} q_{01}$ • π is the probability of being allocated to control group

Under $H_0^*: p_{0*} = p_{1*}$

• $\tilde{p}_* = \frac{Y_{0*} + Y_{1*}}{N_0 + N_1}$, common consistent estimator of p_{0*} and p_{1*}

M

イロト イ部ト イヨト イヨト 三日

•
$$T_* = \sqrt{N_0 + N_1} \frac{(N_0 Y_{1*} - N_1 Y_{0*})}{\sqrt{N_0 N_1 \tilde{p}_* \tilde{q}_*}} \sim N(0, 1)$$

Under $H_{*,n}$: sequences of alternatives that converge to H_0^*

• $T_* \sim N(\mu_*, 1)$ • $\mu_*^2 = \pi (1 - \pi) (\log(OR_*))^2 p_{0*} q_{0*}$

Two Sample Binomial test statistics

Under $H_0: p_{01} = p_{11}$ • $\tilde{p}_1 = \frac{Y_{01} + Y_{11}}{N_0 + N_1}$, common consistent estimator of p_{01} and p_{11} • $T_1 = \sqrt{N_0 + N_1} \frac{(N_0 Y_{11} - N_1 Y_{01})}{\sqrt{N_0 N_1 \tilde{p}_1 \tilde{q}_1}} \sim N(0, 1)$ Under $H_{1,n}$: sequences of alternatives that converge to H_0 • $T_1 \sim N(\mu_1, 1)$ • $\mu_1^2 = \pi (1 - \pi) (\log(OR_1))^2 p_{01} q_{01}$

• π is the probability of being allocated to control group

Under $H_0^*: p_{0*} = p_{1*}$

• $\tilde{p}_* = \frac{Y_{0*} + Y_{1*}}{N_0 + N_1}$, common consistent estimator of p_{0*} and p_{1*} • $T_* = \sqrt{N_0 + N_1} \frac{(N_0 Y_{1*} - N_1 Y_{0*})}{\sqrt{N_0 N_1 \tilde{p}_* \tilde{q}_*}} \sim N(0, 1)$

R a

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Under $H_{*,n}$: sequences of alternatives that converge to H_0^*

•
$$T_* \sim N(\mu_*, 1)$$

• $\mu_*^2 = \pi (1 - \pi) (\log(OR_*))^2 p_{0*} q_{0*}$

Asymptotic relative efficiency of T_* versus T_1

$$ARE(T_*, T_1) = \left(\frac{\mu_*}{\mu_1}\right)^2 = \frac{(\log(OR_*))^2}{(\log(OR_1))^2} \frac{p_{0*}q_{0*}}{p_{01}q_{01}}$$

$$\begin{split} \mathrm{OR}_{*} &= \frac{(\mathrm{O}_{01}\mathrm{OR}_{1}+1)(\mathrm{O}_{02}\mathrm{OR}_{2}+1)-1-\rho_{1}\sqrt{\mathrm{O}_{01}\mathrm{OR}_{1}}\mathrm{O}_{02}\mathrm{OR}_{2}}{\frac{1}{q_{01}q_{02}}-1-\rho_{0}\sqrt{\mathrm{O}_{01}\mathrm{O}_{02}}}\frac{1+\rho_{0}\sqrt{\mathrm{O}_{01}\mathrm{O}_{02}}}{1+\rho_{1}\sqrt{\mathrm{O}_{01}\mathrm{OR}_{1}}\mathrm{O}_{02}\mathrm{OR}_{2}} \end{split}$$
 where $\mathrm{O}_{01} = p_{01}/1-p_{01}, \ \mathrm{O}_{02} = p_{02}/1-p_{02}.$

The ARE as a Function of Interpretable Parameters

- p_{01} and $p_{02} \rightarrow$ Probability exhibiting the RE and AE in control group.
- OR₁ and OR₂
- $\rho \rightarrow$ The correlation between RE and AE

SUMMARIZING

- ARE: Conceptual framework as a tool to decide whether or not a CE should be used when comparing two treatment groups in a RCT
- Use of Composite Endpoints has to be justified from a clinical point of view
- Careful study of the anticipated values for (p₁, p₂, HR₁) and the corresponding ARE in the planning proces of any RCT
- **CompARE** to compute the ARE for time-to-event endpoints
- Extending **CompARE** to sample size computation.
- ARE for binary CE.
- Extending **CompARE** to binary CE.

Thanks to my coauthors

< 口 > < 凸

臣

< ≣ ▶

Composite Endpoints

Oleguer, Susana and Nuria in EMR-IBS 2013, Tel-Aviv

イロト イヨト イヨト イヨト

Some References

 \checkmark Gómez G. and Lagakos S. (2013). Statistical considerations when using a composite endpoint for comparing treatment groups. *Statistics in Medicine*, 32, 719–738.

✓ Gómez G, Gómez-Mateu M, Dafni U.(2014). Informed Choice of Composite End Points in Cardiovascular Trials. *Circulation. Cardiovascular Quality and Outcomes*, **7**, 170–178.

 \checkmark Gómez G. and Gómez-Mateu M. The Asymptotic Relative Efficiency and the ratio of sample sizes when testing two different null hypotheses (2014). SORT, 38, 73–88.

 \checkmark Lagakos, S.W. and Schoenfeld, D. (1984). Properties of Proportional-Hazards Score Tests under Misspecified Regression Models *Biometrics*, **40**, 1037–1048.

 \checkmark Plana, O. and Gómez G. (2014) Selecting the primary endpoint in a randomized clinical trial. The ARE method. (Submitted)

✓ Tardif JC et al. (2008). Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial.. *The Lancet.* 371, Issue 9626, 1761-1768